找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 我沒有辱罵
11#
發(fā)表于 2025-3-23 11:54:25 | 只看該作者
Khem Chand Saini,Sanjeeva Nayaka,Felix BastWe prove that the crossing number of a graph decays in a “continuous fashion” in the following sense. For any .>?0 there is a .>?0 such that for . sufficiently large, every graph . with . vertices and .?≥?.. edges has a subgraph .′ of at most (1???.). edges and crossing number at least .. This generalizes the result of J. Fox and Cs. Tóth.
12#
發(fā)表于 2025-3-23 16:46:17 | 只看該作者
13#
發(fā)表于 2025-3-23 18:23:06 | 只看該作者
https://doi.org/10.1007/978-2-8178-0922-9We describe a practical method to test a leveled graph for level planarity and provide a level planar layout of the graph if the test succeeds, all in quadratic running-time. Embedding constraints restricting the order of incident edges around the vertices are allowed.
14#
發(fā)表于 2025-3-23 22:24:38 | 只看該作者
Computing Symmetries of Combinatorial ObjectsWe survey the practical aspects of computing the symmetries (automorphisms) of combinatorial objects. These include all manner of graphs with adornments, matrices, point sets, etc.. Since automorphisms are just isomorphisms from an object to itself, the problem is intimately related to that of finding isomorphisms between two objects.
15#
發(fā)表于 2025-3-24 05:00:38 | 只看該作者
16#
發(fā)表于 2025-3-24 08:57:48 | 只看該作者
17#
發(fā)表于 2025-3-24 13:07:04 | 只看該作者
Practical Level Planarity Testing and Layout with Embedding ConstraintsWe describe a practical method to test a leveled graph for level planarity and provide a level planar layout of the graph if the test succeeds, all in quadratic running-time. Embedding constraints restricting the order of incident edges around the vertices are allowed.
18#
發(fā)表于 2025-3-24 16:16:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:57:39 | 只看該作者
Crossing Number of Graphs with Rotation Systems Hliněny’s result, that computing the crossing number of a cubic graph (without rotation system) is .-complete. We also investigate the special case of multigraphs with rotation systems on a fixed number . of vertices. For .?=?1 and .?=?2 the crossing number can be computed in polynomial time and ap
20#
發(fā)表于 2025-3-24 23:56:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上犹县| 准格尔旗| 抚松县| 宝鸡市| 波密县| 横峰县| 荃湾区| 日照市| 广南县| 贵溪市| 交口县| 桓仁| 白沙| 交城县| 正蓝旗| 建湖县| 社旗县| 桃源县| 轮台县| 上思县| 武宁县| 玛曲县| 蕉岭县| 交口县| 芦溪县| 桃江县| 崇礼县| 荆门市| 福贡县| 五寨县| 蓝山县| 双流县| 马龙县| 六盘水市| 怀仁县| 宁晋县| 武夷山市| 盐池县| 濉溪县| 吉安市| 黑龙江省|