找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 浮華
41#
發(fā)表于 2025-3-28 18:32:26 | 只看該作者
42#
發(fā)表于 2025-3-28 19:50:50 | 只看該作者
43#
發(fā)表于 2025-3-28 22:54:37 | 只看該作者
The Chernoff Boundigh probability. When this is the case, we say that . is .. In this book, we will see a number of tools for proving that a random variable is concentrated, including Talagrand’s Inequality and Azuma’s Inequality. In this chapter, we begin with the simplest such tool, the Chernoff Bound.
44#
發(fā)表于 2025-3-29 04:41:27 | 只看該作者
Hadwiger’s ConjectureXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaa% baaaaaaaaapeGaamiwaaWdaeqaaOWdbiaacIcacaWGhbGaaiykamrr% 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D
45#
發(fā)表于 2025-3-29 07:47:28 | 只看該作者
A First Glimpse of Total Colouring of one of them, the First Moment Method. In this chapter, we will illustrate the power of combining the other two, the Local Lemma and the Chernoff Bound, by discussing their application to total colouring.
46#
發(fā)表于 2025-3-29 11:33:32 | 只看該作者
47#
發(fā)表于 2025-3-29 15:54:59 | 只看該作者
Total Colouring Revisitedct with it. We then obtained a total colouring by modifying the edge colouring so as to eliminate the conflicts. In this chapter, we take the opposite approach, first choosing a vertex colouring and then choosing an edge colouring which does not conflict . with the vertex colouring, thereby obtainin
48#
發(fā)表于 2025-3-29 21:26:40 | 只看該作者
Talagrand’s Inequality and Colouring Sparse Graphs close to its expected value with high probability. Such tools are extremely valuable to users of the probabilistic method as they allow us to show that with high probability, a random experiment behaves approximately as we “expect” it to.
49#
發(fā)表于 2025-3-30 03:47:49 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:42 | 只看該作者
Graphs with Girth at Least FivefeaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8% qacaGGOaGaaGymaiabgk
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 05:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉善右旗| 调兵山市| 乌鲁木齐市| 高安市| 册亨县| 锡林郭勒盟| 山丹县| 库伦旗| 韩城市| 江口县| 平昌县| 灵璧县| 肃宁县| 江安县| 霍邱县| 涿鹿县| 商洛市| 定州市| 长武县| 阳谷县| 阳东县| 绥棱县| 永昌县| 盘锦市| 赤水市| 逊克县| 新营市| 石狮市| 波密县| 启东市| 越西县| 广东省| 双流县| 靖宇县| 亳州市| 漳平市| 东阿县| 西峡县| 乌兰县| 太原市| 南汇区|