找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 浮華
41#
發(fā)表于 2025-3-28 18:32:26 | 只看該作者
42#
發(fā)表于 2025-3-28 19:50:50 | 只看該作者
43#
發(fā)表于 2025-3-28 22:54:37 | 只看該作者
The Chernoff Boundigh probability. When this is the case, we say that . is .. In this book, we will see a number of tools for proving that a random variable is concentrated, including Talagrand’s Inequality and Azuma’s Inequality. In this chapter, we begin with the simplest such tool, the Chernoff Bound.
44#
發(fā)表于 2025-3-29 04:41:27 | 只看該作者
Hadwiger’s ConjectureXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaa% baaaaaaaaapeGaamiwaaWdaeqaaOWdbiaacIcacaWGhbGaaiykamrr% 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D
45#
發(fā)表于 2025-3-29 07:47:28 | 只看該作者
A First Glimpse of Total Colouring of one of them, the First Moment Method. In this chapter, we will illustrate the power of combining the other two, the Local Lemma and the Chernoff Bound, by discussing their application to total colouring.
46#
發(fā)表于 2025-3-29 11:33:32 | 只看該作者
47#
發(fā)表于 2025-3-29 15:54:59 | 只看該作者
Total Colouring Revisitedct with it. We then obtained a total colouring by modifying the edge colouring so as to eliminate the conflicts. In this chapter, we take the opposite approach, first choosing a vertex colouring and then choosing an edge colouring which does not conflict . with the vertex colouring, thereby obtainin
48#
發(fā)表于 2025-3-29 21:26:40 | 只看該作者
Talagrand’s Inequality and Colouring Sparse Graphs close to its expected value with high probability. Such tools are extremely valuable to users of the probabilistic method as they allow us to show that with high probability, a random experiment behaves approximately as we “expect” it to.
49#
發(fā)表于 2025-3-30 03:47:49 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:42 | 只看該作者
Graphs with Girth at Least FivefeaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8% qacaGGOaGaaGymaiabgk
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 05:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
惠安县| 广东省| 汉寿县| 兴安县| 文安县| 清丰县| 台南市| 商水县| 万盛区| 同仁县| 赫章县| 乌恰县| 江门市| 鸡西市| 西城区| 县级市| 兰溪市| 唐山市| 龙门县| 陇西县| 建平县| 安宁市| 蛟河市| 龙川县| 石屏县| 辉南县| 建瓯市| 乌兰县| 昌图县| 依兰县| 利川市| 华亭县| 景宁| 栾城县| 清苑县| 闽侯县| 红安县| 望江县| 金溪县| 太仓市| 寿宁县|