找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 7917|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:07:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Graph Colouring and the Probabilistic Method
編輯Michael Molloy,Bruce Reed
視頻videohttp://file.papertrans.cn/388/387887/387887.mp4
叢書(shū)名稱Algorithms and Combinatorics
圖書(shū)封面Titlebook: ;
出版日期Book 2002
版次1
doihttps://doi.org/10.1007/978-3-642-04016-0
isbn_ebook978-3-642-04016-0Series ISSN 0937-5511 Series E-ISSN 2197-6783
issn_series 0937-5511
The information of publication is updating

書(shū)目名稱Graph Colouring and the Probabilistic Method影響因子(影響力)




書(shū)目名稱Graph Colouring and the Probabilistic Method影響因子(影響力)學(xué)科排名




書(shū)目名稱Graph Colouring and the Probabilistic Method網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Graph Colouring and the Probabilistic Method網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Graph Colouring and the Probabilistic Method被引頻次




書(shū)目名稱Graph Colouring and the Probabilistic Method被引頻次學(xué)科排名




書(shū)目名稱Graph Colouring and the Probabilistic Method年度引用




書(shū)目名稱Graph Colouring and the Probabilistic Method年度引用學(xué)科排名




書(shū)目名稱Graph Colouring and the Probabilistic Method讀者反饋




書(shū)目名稱Graph Colouring and the Probabilistic Method讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:45:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:07:50 | 只看該作者
The Extraperitoneal Pelvic Compartments,In this chapter we present a second application of an iterative variant of the Naive Colouring Procedure: Kahn’s proof that the List Colouring Conjecture is asymptotically correct, i.e. that for any graph . of maximum degree ., ..(.) = . + .(.) [89].
地板
發(fā)表于 2025-3-22 06:10:03 | 只看該作者
The First Moment MethodIn this chapter, we introduce the First Moment Method., which is the most fundamental tool of the probabilistic method. The essence of the first moment method can be summarized in this simple and surprisingly powerful statement:
5#
發(fā)表于 2025-3-22 08:58:35 | 只看該作者
The Lovász Local LemmaIn this chapter, we introduce one of the most powerful tools of the probabilistic method: The Lovász Local Lemma. We present the Local Lemma by reconsidering the problem of 2-colouring a hypergraph.
6#
發(fā)表于 2025-3-22 14:11:04 | 只看該作者
The List Colouring ConjectureIn this chapter we present a second application of an iterative variant of the Naive Colouring Procedure: Kahn’s proof that the List Colouring Conjecture is asymptotically correct, i.e. that for any graph . of maximum degree ., ..(.) = . + .(.) [89].
7#
發(fā)表于 2025-3-22 19:01:56 | 只看該作者
Graph Colouring and the Probabilistic Method978-3-642-04016-0Series ISSN 0937-5511 Series E-ISSN 2197-6783
8#
發(fā)表于 2025-3-22 23:58:02 | 只看該作者
Sexual and Physical Violent Victimization,igh probability. When this is the case, we say that . is .. In this book, we will see a number of tools for proving that a random variable is concentrated, including Talagrand’s Inequality and Azuma’s Inequality. In this chapter, we begin with the simplest such tool, the Chernoff Bound.
9#
發(fā)表于 2025-3-23 02:21:57 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:43 | 只看該作者
https://doi.org/10.1007/978-1-4419-1078-3ct with it. We then obtained a total colouring by modifying the edge colouring so as to eliminate the conflicts. In this chapter, we take the opposite approach, first choosing a vertex colouring and then choosing an edge colouring which does not conflict . with the vertex colouring, thereby obtaining a total colouring.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
营山县| 安顺市| 青河县| 香河县| 昌黎县| 佛学| 南京市| 独山县| 漯河市| 永川市| 尤溪县| 阿勒泰市| 滕州市| 镇康县| 蕉岭县| 新巴尔虎左旗| 松滋市| 阜康市| 德保县| 萝北县| 西青区| 镇康县| 什邡市| 天祝| 连山| 红桥区| 黄骅市| 富源县| 广平县| 长丰县| 广安市| 米脂县| 玉田县| 崇礼县| 榆树市| 哈尔滨市| 丘北县| 比如县| 天等县| 金门县| 汤原县|