找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 浮華
11#
發(fā)表于 2025-3-23 11:38:11 | 只看該作者
12#
發(fā)表于 2025-3-23 14:09:26 | 只看該作者
The Chernoff Boundigh probability. When this is the case, we say that . is .. In this book, we will see a number of tools for proving that a random variable is concentrated, including Talagrand’s Inequality and Azuma’s Inequality. In this chapter, we begin with the simplest such tool, the Chernoff Bound.
13#
發(fā)表于 2025-3-23 20:00:53 | 只看該作者
14#
發(fā)表于 2025-3-23 22:30:50 | 只看該作者
Total Colouring Revisitedct with it. We then obtained a total colouring by modifying the edge colouring so as to eliminate the conflicts. In this chapter, we take the opposite approach, first choosing a vertex colouring and then choosing an edge colouring which does not conflict . with the vertex colouring, thereby obtaining a total colouring.
15#
發(fā)表于 2025-3-24 06:25:52 | 只看該作者
Talagrand’s Inequality and Colouring Sparse Graphs close to its expected value with high probability. Such tools are extremely valuable to users of the probabilistic method as they allow us to show that with high probability, a random experiment behaves approximately as we “expect” it to.
16#
發(fā)表于 2025-3-24 10:31:22 | 只看該作者
17#
發(fā)表于 2025-3-24 11:36:04 | 只看該作者
https://doi.org/10.1007/978-3-319-90584-6ex set has chromatic number 3. In other words, ... is strongly 3-colourable. Strongly .-colourable graphs are of interest partially because of their relationship to this problem, and also because they have other applications (see for example, Exercise 8.1).
18#
發(fā)表于 2025-3-24 17:09:22 | 只看該作者
19#
發(fā)表于 2025-3-24 21:37:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:49:17 | 只看該作者
https://doi.org/10.1007/978-3-476-03780-0otion of what an event is, which corresponds to this word’s use in everyday language. Formally, an . is a subset A of .. For example, we identify the event that the die roll is odd with the subset ({1, 3, 5}). Similarly, the event that the coin landed the same way up every time is the set ({.}).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通榆县| 武邑县| 石狮市| 大安市| 衡东县| 巴林右旗| 阿尔山市| 平凉市| 诏安县| 汝阳县| 邓州市| 金山区| 松江区| 望都县| 西城区| 临夏市| 西林县| 朝阳市| 大兴区| 巫溪县| 南充市| 刚察县| 临武县| 收藏| 沅江市| 涞水县| 咸丰县| 特克斯县| 纳雍县| 全椒县| 乐都县| 大理市| 蓝田县| 鄂温| 肇州县| 蓬溪县| 玉屏| 庆元县| 泸定县| 正镶白旗| 翼城县|