找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces; Marek Golasiński,Juno Mukai Book 2014 Springer International

[復(fù)制鏈接]
查看: 45330|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:10:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces
編輯Marek Golasiński,Juno Mukai
視頻videohttp://file.papertrans.cn/388/387470/387470.mp4
概述Presents a systematic study of Gottlieb Groups of Spheres.Uses classical methods of homotopy theory and Lie groups to develop new theories on Gottlieb Projective Spaces.Contains a number of nontrivial
圖書封面Titlebook: Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces;  Marek Golasiński,Juno Mukai Book 2014 Springer International
描述.This is a monograph that details the use of Siegel’s method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..
出版日期Book 2014
關(guān)鍵詞Gottlieb Groups; Homotopy Groups; Lie Groups; Topology; Whitehead Products
版次1
doihttps://doi.org/10.1007/978-3-319-11517-7
isbn_softcover978-3-319-38454-2
isbn_ebook978-3-319-11517-7
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces影響因子(影響力)




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces影響因子(影響力)學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces網(wǎng)絡(luò)公開度




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces被引頻次




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces被引頻次學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces年度引用




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces年度引用學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces讀者反饋




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:46 | 只看該作者
se of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..978-3-319-38454-2978-3-319-11517-7
板凳
發(fā)表于 2025-3-22 00:25:16 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:37 | 只看該作者
Book 2014Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..
5#
發(fā)表于 2025-3-22 11:47:10 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:31 | 只看該作者
Klaus Bellmann,Udo MildenbergerThis chapter published in [20] takes up the systematic study of the Gottlieb groups . of spheres for .?≤?13 by means of the classical homotopy theory methods. We fully determine the groups . for .?≤?13 except for the two-primary components in the cases: .. Especially, we show that . if . for .?≥?4.
7#
發(fā)表于 2025-3-22 20:43:30 | 只看該作者
Grundlegungen zur Unternehmungsteilung,By the use of Siegel’s method and the classical results of homotopy groupsof spheres and Lie groups, we determine in this chapter some Gottlieb groups of projective spaces or give the lower bounds of their orders. Furthermore, making use of the properties of Whitehead products, we determine some Whitehead center groups of projective spaces.
8#
發(fā)表于 2025-3-22 23:18:18 | 只看該作者
https://doi.org/10.1007/978-3-8350-9066-8This chapter takes up the systematic study of the Gottlieb groups . of Moore spaces .(.,?.) foran abelian group . and .?≥?2. The groups . and . are determined for .?=?0,?1,?2,?3,?4,?5 and .?≥?2 provided . is finite.
9#
發(fā)表于 2025-3-23 04:16:31 | 只看該作者
Gottlieb Groups of Spheres,This chapter published in [20] takes up the systematic study of the Gottlieb groups . of spheres for .?≤?13 by means of the classical homotopy theory methods. We fully determine the groups . for .?≤?13 except for the two-primary components in the cases: .. Especially, we show that . if . for .?≥?4.
10#
發(fā)表于 2025-3-23 07:28:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石家庄市| 达孜县| 鄢陵县| 东城区| 娱乐| 揭东县| 聂荣县| 商河县| 六枝特区| 边坝县| 石台县| 宽城| 贺州市| 固原市| 丰县| 胶南市| 临潭县| 邹城市| 拜泉县| 永川市| 大庆市| 清远市| 枣强县| 石台县| 大邑县| 伊金霍洛旗| 盐亭县| 万荣县| 池州市| 临邑县| 阿克陶县| 曲阜市| 乐陵市| 清镇市| 镇沅| 米脂县| 西丰县| 辽宁省| 来安县| 梁山县| 岳阳市|