找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces; Marek Golasiński,Juno Mukai Book 2014 Springer International

[復(fù)制鏈接]
查看: 45334|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:10:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces
編輯Marek Golasiński,Juno Mukai
視頻videohttp://file.papertrans.cn/388/387470/387470.mp4
概述Presents a systematic study of Gottlieb Groups of Spheres.Uses classical methods of homotopy theory and Lie groups to develop new theories on Gottlieb Projective Spaces.Contains a number of nontrivial
圖書封面Titlebook: Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces;  Marek Golasiński,Juno Mukai Book 2014 Springer International
描述.This is a monograph that details the use of Siegel’s method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..
出版日期Book 2014
關(guān)鍵詞Gottlieb Groups; Homotopy Groups; Lie Groups; Topology; Whitehead Products
版次1
doihttps://doi.org/10.1007/978-3-319-11517-7
isbn_softcover978-3-319-38454-2
isbn_ebook978-3-319-11517-7
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces影響因子(影響力)




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces影響因子(影響力)學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces網(wǎng)絡(luò)公開度




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces被引頻次




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces被引頻次學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces年度引用




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces年度引用學(xué)科排名




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces讀者反饋




書目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:46 | 只看該作者
se of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..978-3-319-38454-2978-3-319-11517-7
板凳
發(fā)表于 2025-3-22 00:25:16 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:37 | 只看該作者
Book 2014Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..
5#
發(fā)表于 2025-3-22 11:47:10 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:31 | 只看該作者
Klaus Bellmann,Udo MildenbergerThis chapter published in [20] takes up the systematic study of the Gottlieb groups . of spheres for .?≤?13 by means of the classical homotopy theory methods. We fully determine the groups . for .?≤?13 except for the two-primary components in the cases: .. Especially, we show that . if . for .?≥?4.
7#
發(fā)表于 2025-3-22 20:43:30 | 只看該作者
Grundlegungen zur Unternehmungsteilung,By the use of Siegel’s method and the classical results of homotopy groupsof spheres and Lie groups, we determine in this chapter some Gottlieb groups of projective spaces or give the lower bounds of their orders. Furthermore, making use of the properties of Whitehead products, we determine some Whitehead center groups of projective spaces.
8#
發(fā)表于 2025-3-22 23:18:18 | 只看該作者
https://doi.org/10.1007/978-3-8350-9066-8This chapter takes up the systematic study of the Gottlieb groups . of Moore spaces .(.,?.) foran abelian group . and .?≥?2. The groups . and . are determined for .?=?0,?1,?2,?3,?4,?5 and .?≥?2 provided . is finite.
9#
發(fā)表于 2025-3-23 04:16:31 | 只看該作者
Gottlieb Groups of Spheres,This chapter published in [20] takes up the systematic study of the Gottlieb groups . of spheres for .?≤?13 by means of the classical homotopy theory methods. We fully determine the groups . for .?≤?13 except for the two-primary components in the cases: .. Especially, we show that . if . for .?≥?4.
10#
發(fā)表于 2025-3-23 07:28:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤峰市| 中卫市| 烟台市| 峨山| 沧州市| 洛扎县| 错那县| 中阳县| 香河县| 子长县| 全州县| 南乐县| 新源县| 南平市| 邻水| 鄂托克旗| 盐津县| 襄樊市| 安庆市| 浏阳市| 新晃| 同江市| 平昌县| 永和县| 顺昌县| 临高县| 航空| 翼城县| 博乐市| 安福县| 揭西县| 思南县| 镇坪县| 乐亭县| 海宁市| 徐州市| 昌乐县| 永城市| 舟山市| 青冈县| 安国市|