找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復(fù)制鏈接]
樓主: 大口水罐
51#
發(fā)表于 2025-3-30 08:28:29 | 只看該作者
Mean Derivatives in Linear Spaceselson, ., .). This notion was first introduced by E. Nelson (., ., .) for the needs of so-called stochastic mechanics (see Chapter 15) but it turns out to be useful in some other problems of mathematical physics, economics, and elsewhere.
52#
發(fā)表于 2025-3-30 13:20:40 | 只看該作者
Hydrodynamics,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
53#
發(fā)表于 2025-3-30 17:52:52 | 只看該作者
54#
發(fā)表于 2025-3-30 23:13:16 | 只看該作者
Kurzes Lehrbuch der Physiologischen ChemieIn this chapter we survey some notions in the theory of set-valued mappings which will be used below for the description of complicated mechanical systems such as systems with discontinuous forces, with control, etc.
55#
發(fā)表于 2025-3-31 04:41:21 | 只看該作者
Wolfgang Bühler,Hermann Gehring,Horst GlaserLet . be a finite-dimensional manifold. Recall that on the manifold . there is a vertical distribution . (a sub-bundle of the second tangent bundle .) whose fibers consist of vectors tangent to the fibers of .. The vectors belonging to . are said to be . (see Section 2.1).
56#
發(fā)表于 2025-3-31 05:43:49 | 只看該作者
Der gesunde Mensch (physische Hygiene),The Newton-Nelson equation is a version of Newton’s law formulated in terms of mixed symmetric second order mean derivatives. It describes the motion of a quantum particle in the framework of stochastic mechanics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨眉山市| 长葛市| 临夏市| 密云县| 大洼县| 托克逊县| 防城港市| 东阿县| 泾源县| 长汀县| 屯昌县| 濉溪县| 六枝特区| 东港市| 定远县| 陵水| 个旧市| 正阳县| 邯郸县| 郸城县| 镇安县| 四子王旗| 栾川县| 黑水县| 北川| 改则县| 辽中县| 中山市| 紫云| 澄江县| 边坝县| 兴化市| 武义县| 桐柏县| 阳信县| 会昌县| 广平县| 泊头市| 额济纳旗| 三都| 嘉禾县|