找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復(fù)制鏈接]
樓主: 大口水罐
21#
發(fā)表于 2025-3-25 03:47:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:48:59 | 只看該作者
Some Problems on Lorentz Manifoldsy and to describe the relativistic problems discussed below. We are mainly interested in the constructions of general relativity, the formulae of special relativity arising as consequences of the latter. Since the exposition is intended for mathematicians, we present it axiomatically, starting from
23#
發(fā)表于 2025-3-25 14:56:22 | 只看該作者
24#
發(fā)表于 2025-3-25 17:51:26 | 只看該作者
Hydrodynamics,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
25#
發(fā)表于 2025-3-25 21:47:59 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:30 | 只看該作者
1864-5879 ss common treatment for areas of mathematical physics tradit.

Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is f

27#
發(fā)表于 2025-3-26 06:42:05 | 只看該作者
28#
發(fā)表于 2025-3-26 12:09:38 | 只看該作者
29#
發(fā)表于 2025-3-26 15:36:34 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:51 | 只看該作者
https://doi.org/10.1007/978-3-663-04195-5e description of this theory requires a complicated functional-analytic machinery that is not included in our exposition. For simplicity of presentation, we restrict ourselves to the finite-dimensional version of the theory since, in applications, the theories yield very similar results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉山县| 兴宁市| 荆门市| 轮台县| 什邡市| 永和县| 佛教| 武陟县| 麻阳| 禹城市| 呼伦贝尔市| 固原市| 濉溪县| 元谋县| 贡山| 邳州市| 信宜市| 金平| 东台市| 韶关市| 岑溪市| 鸡泽县| 石家庄市| 电白县| 遵义县| 曲靖市| 怀安县| 庄河市| 通化市| 太和县| 平江县| 中山市| 皋兰县| 武功县| 美姑县| 黑河市| 秦安县| 蒲江县| 昭通市| 金门县| 澎湖县|