找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Bifurcation Theory and Hilbert’s Sixteenth Problem; Valery A. Gaiko Book 2003 Springer Science+Business Media New York 2003 differe

[復(fù)制鏈接]
樓主: Forestall
11#
發(fā)表于 2025-3-23 13:26:34 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:46 | 只看該作者
Radiation Experimental Results,rko for two-dimensional analytic systems, to the study of global bifurcations of multiple limit cycles in polynomial systems. There is a quite definite number of field-rotation parameters determining the bifurcations of multiple limit cycles in the polynomial systems, and in some cases, for example,
13#
發(fā)表于 2025-3-23 18:46:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:12 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:06 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:15 | 只看該作者
Book 2003ss of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema- tics in many respects (1, 119]. Hilbert‘s Sixteenth Problem (the second part) was stated as follows
19#
發(fā)表于 2025-3-24 19:15:16 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:12 | 只看該作者
Radiation Experimental Results, obtained results and applying the Wintner-Perko termination principle for multiple limit cycles, we suggest a new (global) approach to the solution of Hilbert’s Sixteenth Problem in the case of quadratic systems. This approach can be applied also to cubic and more general polynomial systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荥经县| 金湖县| 庆城县| 方城县| 绥化市| 独山县| 米脂县| 乡宁县| 财经| 乌审旗| 广水市| 荆门市| 四会市| 舞阳县| 衡阳市| 安徽省| 巨野县| 双辽市| 康平县| 民和| 平安县| 田阳县| 光山县| 达拉特旗| 阿克苏市| 亚东县| 浑源县| 南江县| 阿尔山市| 南城县| 汾阳市| 嘉定区| 黑水县| 迁西县| 陆川县| 晋宁县| 石渠县| 平塘县| 连平县| 邵阳县| 云霄县|