找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Bifurcation Theory and Hilbert’s Sixteenth Problem; Valery A. Gaiko Book 2003 Springer Science+Business Media New York 2003 differe

[復(fù)制鏈接]
查看: 34259|回復(fù): 37
樓主
發(fā)表于 2025-3-21 20:09:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem
編輯Valery A. Gaiko
視頻videohttp://file.papertrans.cn/387/386043/386043.mp4
叢書(shū)名稱Mathematics and Its Applications
圖書(shū)封面Titlebook: Global Bifurcation Theory and Hilbert’s Sixteenth Problem;  Valery A. Gaiko Book 2003 Springer Science+Business Media New York 2003 differe
描述On the 8th of August 1900 outstanding German mathematician David Hilbert delivered a talk "Mathematical problems" at the Second Interna- tional Congress of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema- tics in many respects (1, 119]. Hilbert‘s Sixteenth Problem (the second part) was stated as follows: Problem. To find the maximum number and to determine the relative position of limit cycles of the equation dy Qn(X, y) -= dx Pn(x, y)‘ where Pn and Qn are polynomials of real variables x, y with real coeffi- cients and not greater than n degree. The study of limit cycles is an interesting and very difficult problem of the qualitative theory of differential equations. This theory was origi- nated at the end of the nineteenth century in the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In tur
出版日期Book 2003
關(guān)鍵詞differential equation; dynamical systems; dynamische Systeme; ecology; mathematics; mechanics; ordinary di
版次1
doihttps://doi.org/10.1007/978-1-4419-9168-3
isbn_softcover978-1-4613-4819-1
isbn_ebook978-1-4419-9168-3
copyrightSpringer Science+Business Media New York 2003
The information of publication is updating

書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem影響因子(影響力)




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem影響因子(影響力)學(xué)科排名




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem被引頻次




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem被引頻次學(xué)科排名




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem年度引用




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem年度引用學(xué)科排名




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem讀者反饋




書(shū)目名稱Global Bifurcation Theory and Hilbert’s Sixteenth Problem讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:06 | 只看該作者
Global Bifurcation Theory and Hilbert’s Sixteenth Problem978-1-4419-9168-3
板凳
發(fā)表于 2025-3-22 03:57:05 | 只看該作者
地板
發(fā)表于 2025-3-22 04:44:54 | 只看該作者
the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In tur978-1-4613-4819-1978-1-4419-9168-3
5#
發(fā)表于 2025-3-22 12:34:27 | 只看該作者
https://doi.org/10.1007/978-1-4419-9168-3differential equation; dynamical systems; dynamische Systeme; ecology; mathematics; mechanics; ordinary di
6#
發(fā)表于 2025-3-22 12:54:35 | 只看該作者
7#
發(fā)表于 2025-3-22 19:21:03 | 只看該作者
https://doi.org/10.1007/978-3-319-70721-1In this chapter, the bifurcation of the birth of limit cycles from a singular point of the focus or center type (the Andronov-Hopf bifurcation) is considered and, first of all, with the help of this bifurcation, examples of quadratic systems with the maximum number of limit cycles are constructed.
8#
發(fā)表于 2025-3-23 01:03:16 | 只看該作者
9#
發(fā)表于 2025-3-23 05:21:11 | 只看該作者
10#
發(fā)表于 2025-3-23 06:31:46 | 只看該作者
978-1-4613-4819-1Springer Science+Business Media New York 2003
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯昌县| 万山特区| 沅陵县| 鄯善县| 常山县| 中方县| 天镇县| 宜宾县| 汉中市| 赫章县| 西安市| 石景山区| 上虞市| 大名县| 新闻| 辽阳市| 呼和浩特市| 松溪县| 冷水江市| 莆田市| 大同县| 营山县| 嵊州市| 安岳县| 阜平县| 凤庆县| 体育| 苏尼特左旗| 祁连县| 宁安市| 波密县| 武清区| 泽州县| 阿鲁科尔沁旗| 乌鲁木齐县| 江西省| 漠河县| 灵石县| 石景山区| 怀柔区| 遵义市|