找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Analysis in Mathematical Physics; Geometric and Stocha Yuri Gliklikh Book 1997 Springer Science+Business Media New York 1997 Christo

[復(fù)制鏈接]
查看: 51350|回復(fù): 45
樓主
發(fā)表于 2025-3-21 18:35:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Global Analysis in Mathematical Physics
副標(biāo)題Geometric and Stocha
編輯Yuri Gliklikh
視頻videohttp://file.papertrans.cn/387/386008/386008.mp4
叢書(shū)名稱Applied Mathematical Sciences
圖書(shū)封面Titlebook: Global Analysis in Mathematical Physics; Geometric and Stocha Yuri Gliklikh Book 1997 Springer Science+Business Media New York 1997 Christo
描述The first edition of this book entitled Analysis on Riemannian Manifolds and Some Problems of Mathematical Physics was published by Voronezh Univer- sity Press in 1989. For its English edition, the book has been substantially revised and expanded. In particular, new material has been added to Sections 19 and 20. I am grateful to Viktor L. Ginzburg for his hard work on the transla- tion and for writing Appendix F, and to Tomasz Zastawniak for his numerous suggestions. My special thanks go to the referee for his valuable remarks on the theory of stochastic processes. Finally, I would like to acknowledge the support of the AMS fSU Aid Fund and the International Science Foundation (Grant NZBOOO), which made possible my work on some of the new results included in the English edition of the book. Voronezh, Russia Yuri Gliklikh September, 1995 Preface to the Russian Edition The present book is apparently the first in monographic literature in which a common treatment is given to three areas of global analysis previously consid- ered quite distant from each other, namely, differential geometry and classical mechanics, stochastic differential geometry and statistical and quantum me- chanics
出版日期Book 1997
關(guān)鍵詞Christoffel symbols; Martingale; Semimartingale; Stochastic processes; classical mechanics; diffeomorphis
版次1
doihttps://doi.org/10.1007/978-1-4612-1866-1
isbn_softcover978-1-4612-7317-2
isbn_ebook978-1-4612-1866-1Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書(shū)目名稱Global Analysis in Mathematical Physics影響因子(影響力)




書(shū)目名稱Global Analysis in Mathematical Physics影響因子(影響力)學(xué)科排名




書(shū)目名稱Global Analysis in Mathematical Physics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Global Analysis in Mathematical Physics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Global Analysis in Mathematical Physics被引頻次




書(shū)目名稱Global Analysis in Mathematical Physics被引頻次學(xué)科排名




書(shū)目名稱Global Analysis in Mathematical Physics年度引用




書(shū)目名稱Global Analysis in Mathematical Physics年度引用學(xué)科排名




書(shū)目名稱Global Analysis in Mathematical Physics讀者反饋




書(shū)目名稱Global Analysis in Mathematical Physics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:48:02 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:27 | 只看該作者
5#
發(fā)表于 2025-3-22 12:31:06 | 只看該作者
Executive Search and the European Scene,, and [129].) However, we should particularly point out the excellent introductory paper [30] illuminating those aspects of the theory which are especially important for our approach. Some basic notions are briefly reviewed in Appendix C.
6#
發(fā)表于 2025-3-22 15:15:10 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:40 | 只看該作者
Stochastic Differential Equations on Riemannian Manifolds, and [129].) However, we should particularly point out the excellent introductory paper [30] illuminating those aspects of the theory which are especially important for our approach. Some basic notions are briefly reviewed in Appendix C.
9#
發(fā)表于 2025-3-23 04:28:24 | 只看該作者
The Langevin Equationng in geometric mechanics. Note that in the case under consideration the trajectories of the process are a.s. smooth. This makes the analysis of such systems technically much simpler than that of the general ones studied in Chap. 4.
10#
發(fā)表于 2025-3-23 08:22:13 | 只看該作者
Mean Derivatives, Nelson’s Stochastic Mechanics, and Quantizationtly, Fenyes [48] was the first to introduce and study such processes. However, stochastic mechanics became well known only after the publication of papers [110] and [111] by Nelson who developed the theory independently and gave it a natural form. A more detailed review of the history of this question can be found in [27], [110], and [113].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
文水县| 图们市| 襄汾县| 德清县| 旬阳县| 津市市| 德清县| 上栗县| 惠安县| 乳山市| 即墨市| 临海市| 无锡市| 伊通| 台南县| 隆子县| 沐川县| 金乡县| 乌海市| 武穴市| 彭水| 通山县| 盐源县| 饶河县| 荥经县| 密山市| 凤阳县| 册亨县| 黎城县| 苍南县| 马鞍山市| 资兴市| 都匀市| 桂平市| 文昌市| 黄平县| 甘肃省| 随州市| 资溪县| 桦甸市| 汪清县|