找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Analysis in Mathematical Physics; Geometric and Stocha Yuri Gliklikh Book 1997 Springer Science+Business Media New York 1997 Christo

[復制鏈接]
查看: 51351|回復: 45
樓主
發(fā)表于 2025-3-21 18:35:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Global Analysis in Mathematical Physics
副標題Geometric and Stocha
編輯Yuri Gliklikh
視頻videohttp://file.papertrans.cn/387/386008/386008.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Global Analysis in Mathematical Physics; Geometric and Stocha Yuri Gliklikh Book 1997 Springer Science+Business Media New York 1997 Christo
描述The first edition of this book entitled Analysis on Riemannian Manifolds and Some Problems of Mathematical Physics was published by Voronezh Univer- sity Press in 1989. For its English edition, the book has been substantially revised and expanded. In particular, new material has been added to Sections 19 and 20. I am grateful to Viktor L. Ginzburg for his hard work on the transla- tion and for writing Appendix F, and to Tomasz Zastawniak for his numerous suggestions. My special thanks go to the referee for his valuable remarks on the theory of stochastic processes. Finally, I would like to acknowledge the support of the AMS fSU Aid Fund and the International Science Foundation (Grant NZBOOO), which made possible my work on some of the new results included in the English edition of the book. Voronezh, Russia Yuri Gliklikh September, 1995 Preface to the Russian Edition The present book is apparently the first in monographic literature in which a common treatment is given to three areas of global analysis previously consid- ered quite distant from each other, namely, differential geometry and classical mechanics, stochastic differential geometry and statistical and quantum me- chanics
出版日期Book 1997
關(guān)鍵詞Christoffel symbols; Martingale; Semimartingale; Stochastic processes; classical mechanics; diffeomorphis
版次1
doihttps://doi.org/10.1007/978-1-4612-1866-1
isbn_softcover978-1-4612-7317-2
isbn_ebook978-1-4612-1866-1Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Global Analysis in Mathematical Physics影響因子(影響力)




書目名稱Global Analysis in Mathematical Physics影響因子(影響力)學科排名




書目名稱Global Analysis in Mathematical Physics網(wǎng)絡(luò)公開度




書目名稱Global Analysis in Mathematical Physics網(wǎng)絡(luò)公開度學科排名




書目名稱Global Analysis in Mathematical Physics被引頻次




書目名稱Global Analysis in Mathematical Physics被引頻次學科排名




書目名稱Global Analysis in Mathematical Physics年度引用




書目名稱Global Analysis in Mathematical Physics年度引用學科排名




書目名稱Global Analysis in Mathematical Physics讀者反饋




書目名稱Global Analysis in Mathematical Physics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:48:02 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:27 | 只看該作者
5#
發(fā)表于 2025-3-22 12:31:06 | 只看該作者
Executive Search and the European Scene,, and [129].) However, we should particularly point out the excellent introductory paper [30] illuminating those aspects of the theory which are especially important for our approach. Some basic notions are briefly reviewed in Appendix C.
6#
發(fā)表于 2025-3-22 15:15:10 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:40 | 只看該作者
Stochastic Differential Equations on Riemannian Manifolds, and [129].) However, we should particularly point out the excellent introductory paper [30] illuminating those aspects of the theory which are especially important for our approach. Some basic notions are briefly reviewed in Appendix C.
9#
發(fā)表于 2025-3-23 04:28:24 | 只看該作者
The Langevin Equationng in geometric mechanics. Note that in the case under consideration the trajectories of the process are a.s. smooth. This makes the analysis of such systems technically much simpler than that of the general ones studied in Chap. 4.
10#
發(fā)表于 2025-3-23 08:22:13 | 只看該作者
Mean Derivatives, Nelson’s Stochastic Mechanics, and Quantizationtly, Fenyes [48] was the first to introduce and study such processes. However, stochastic mechanics became well known only after the publication of papers [110] and [111] by Nelson who developed the theory independently and gave it a natural form. A more detailed review of the history of this question can be found in [27], [110], and [113].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
闽清县| 渝中区| 浑源县| 乃东县| 晴隆县| 徐水县| 扶余县| 肥城市| 灵川县| 旬阳县| 金门县| 浦江县| 交城县| 康保县| 特克斯县| 宁夏| 包头市| 靖远县| 临洮县| 株洲市| 九龙县| 平潭县| 渑池县| 青铜峡市| 新泰市| 桑日县| 黔南| 临邑县| 古蔺县| 肇东市| 巴东县| 五家渠市| 龙游县| 宁国市| 遂宁市| 应城市| 台江县| 随州市| 奉新县| 大悟县| 古田县|