找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry: Euclid and Beyond; Robin Hartshorne Textbook 2000 Robin Hartshorne 2000 Area.Euclid.Euclid‘s Elements.Geometry.Non-Euclidean Geo

[復(fù)制鏈接]
查看: 55955|回復(fù): 42
樓主
發(fā)表于 2025-3-21 20:09:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry: Euclid and Beyond
編輯Robin Hartshorne
視頻videohttp://file.papertrans.cn/384/383857/383857.mp4
叢書名稱Undergraduate Texts in Mathematics
圖書封面Titlebook: Geometry: Euclid and Beyond;  Robin Hartshorne Textbook 2000 Robin Hartshorne 2000 Area.Euclid.Euclid‘s Elements.Geometry.Non-Euclidean Geo
描述In recent years, I have been teaching a junior-senior-level course on the classi- cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid‘s Elements. Students are expected to read concurrently Books I-IV of Euclid‘s text, which must be obtained sepa- rately. The remainder of the book is an exploration of questions that arise natu- rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert‘s axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And in the last chapter we provide what is missing from Euclid‘s treatment of the five Platonic solids in Book XIII of the Elements. For a one-semester course such as I teach, Chapter
出版日期Textbook 2000
關(guān)鍵詞Area; Euclid; Euclid‘s Elements; Geometry; Non-Euclidean Geometry
版次1
doihttps://doi.org/10.1007/978-0-387-22676-7
isbn_softcover978-1-4419-3145-0
isbn_ebook978-0-387-22676-7Series ISSN 0172-6056 Series E-ISSN 2197-5604
issn_series 0172-6056
copyrightRobin Hartshorne 2000
The information of publication is updating

書目名稱Geometry: Euclid and Beyond影響因子(影響力)




書目名稱Geometry: Euclid and Beyond影響因子(影響力)學(xué)科排名




書目名稱Geometry: Euclid and Beyond網(wǎng)絡(luò)公開度




書目名稱Geometry: Euclid and Beyond網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry: Euclid and Beyond被引頻次




書目名稱Geometry: Euclid and Beyond被引頻次學(xué)科排名




書目名稱Geometry: Euclid and Beyond年度引用




書目名稱Geometry: Euclid and Beyond年度引用學(xué)科排名




書目名稱Geometry: Euclid and Beyond讀者反饋




書目名稱Geometry: Euclid and Beyond讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:19:01 | 只看該作者
Electrification Phenomena in Rocksdecessors Pythagoras, Theaetetus, and Eudoxus into one magnificent edifice. This book soon became the standard for geometry in the classical world. With the decline of the great civilizations of Athens and Rome, it moved eastward to the center of Arabic learning in the court of the caliphs at Baghda
地板
發(fā)表于 2025-3-22 06:32:43 | 只看該作者
https://doi.org/10.1007/978-981-10-3026-0way of recording ruler and compass constructions so that we can measure their complexity. We discuss what are presumably familiar notions from high school geometry as it is taught today. And then we present Euclid’s construction of the regular pentagon and discuss its proof.
5#
發(fā)表于 2025-3-22 09:18:09 | 只看該作者
Surface Thermodynamics of Solid Electrode,ient by modern standards of rigor to supply the foundation for Euclid‘s geometry. This will mean also axiomatizing those arguments where he used intuition, or said nothing. In particular, the axioms for betweenness, based on the work of Pasch in the 1880s, are the most striking innovation in this se
6#
發(fā)表于 2025-3-22 15:36:39 | 只看該作者
https://doi.org/10.1007/978-1-4684-3497-2d. The axioms of incidence are valid over any field (Section 14). For the notion of betweenness we need an ordered field (Section 15). For the axiom (C1) on transferring a line segment to a given ray, we need a property (*) on the existence of certain square roots in the field .. To carry out Euclid
7#
發(fā)表于 2025-3-22 17:36:41 | 只看該作者
https://doi.org/10.1007/978-3-030-04591-3 geometries over fields studied in Chapter 3. We will show how to define addition and multiplication of line segments in a Hilbert plane satisfying the parallel axiom (P). In this way, the congruence equivalence classes of line segments become the positive elements of an ordered field . (Section 19)
8#
發(fā)表于 2025-3-22 21:25:24 | 只看該作者
Electroacoustical Reference Datang that two figures have equal content if we can transform one figure into the other by adding and subtracting congruent triangles (Section 22). We can prove all the properties of area that Euclid uses, except that “the whole is greater than the part.” This is established only when we relate the geo
9#
發(fā)表于 2025-3-23 03:52:34 | 只看該作者
https://doi.org/10.1007/978-3-7091-6211-8Because of the construction of the field of segment arithmetic, one could even argue that the use of fields in Chapter 4 arises naturally from the geometry. In this chapter, however, we will make use of modern algebra, the theory of equations and field extensions, and in particular the Galois theory
10#
發(fā)表于 2025-3-23 05:46:19 | 只看該作者
https://doi.org/10.1007/978-1-4899-1715-7nd developed in all its glory by Bolyai and Lobachevsky. The purpose of this chapter is to give an account of this theory, but we do not always follow the historical development. Rather, with hindsight we use those methods that seem to shed the most light on the subject. For example, continuity argu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦县| 芮城县| 白朗县| 时尚| 香河县| 襄樊市| 大同县| 东丰县| 新巴尔虎左旗| 赞皇县| 商城县| 柳州市| 潮州市| 宁武县| 旬阳县| 清原| 独山县| 通道| 鹰潭市| 清苑县| 珠海市| 巴林左旗| 高台县| 来安县| 安多县| 南通市| 商洛市| 民乐县| 景东| 正镶白旗| 扶余县| 左云县| 佳木斯市| 玉林市| 英山县| 台江县| 新营市| 保亭| 金沙县| 耒阳市| 仙居县|