找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry — von Staudt’s Point of View; Proceedings of the N Peter Plaumann,Karl Strambach Conference proceedings 1981 D. Reidel Publishing

[復(fù)制鏈接]
樓主: HABIT
31#
發(fā)表于 2025-3-26 21:01:53 | 只看該作者
Projectivities and the Geometric Structure of Topological Planes connectedness properties of von Staudt groups, and in §4 we present the necessary results on topological transformation groups..Some of the results have not appeared in the literature (2.1, 2.5, 6.8, 7.6), or have appeared in a different form. In some cases, errors contained in the original papers are corrected (6.6, 7.5, 7.7).
32#
發(fā)表于 2025-3-27 04:54:21 | 只看該作者
L. Herbert Hesmer,Holzwirtin Jutta Pokers of the line. A substantial portion of this exposition is devoted to the resolution of algebraic difficulties which arise when the classical results are reinterpreted in a plane coordinatized by a properly alternative, rather than associative, division ring.
33#
發(fā)表于 2025-3-27 08:35:38 | 只看該作者
Einzelabschlu? und Konzernabschlu?oup of collineations, the existentially closed models of this class are existentially closed projective planes with an existentially closed group attached as a group of collineations which acts transitively on each isomorphism class of finitely generated subplanes.
34#
發(fā)表于 2025-3-27 11:18:50 | 只看該作者
35#
發(fā)表于 2025-3-27 14:30:22 | 只看該作者
Existentially Closed Projective Planesoup of collineations, the existentially closed models of this class are existentially closed projective planes with an existentially closed group attached as a group of collineations which acts transitively on each isomorphism class of finitely generated subplanes.
36#
發(fā)表于 2025-3-27 19:43:12 | 只看該作者
https://doi.org/10.1007/978-3-8349-8524-8d by the existence of a permutation group on a line, sharply transitive on 1{P} for a point P on 1, and normalized by those projectivities of 1 onto itself with fixed point P (Generalized Lüneburg-Yaqub- Theorem).
37#
發(fā)表于 2025-3-27 23:11:52 | 只看該作者
38#
發(fā)表于 2025-3-28 03:40:42 | 只看該作者
Die Lebenswelt von Kindern ohne Geschwister,heir results are included in the results by Th. Grundh?fer which will be presented here for the first time. I would like to thank Th. Grundh?fer very much indeed for allowing me to incorporate his material into this note.
39#
發(fā)表于 2025-3-28 07:11:47 | 只看該作者
Projectivities In Projective Planesd by the existence of a permutation group on a line, sharply transitive on 1{P} for a point P on 1, and normalized by those projectivities of 1 onto itself with fixed point P (Generalized Lüneburg-Yaqub- Theorem).
40#
發(fā)表于 2025-3-28 12:38:53 | 只看該作者
Perspectivities in Circle Geometriesr a doctorate. Especially the beautiful results obtained by BENZ stimulated research in this field so that an increasing number of mathematicians started work in the field of circle geometries. Among those who made important contributions we would like to mention R. ARTZY, P. DEMBOWSKI, W. HEISE, H. M?URER, P. QUATTROCCHI.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿宁县| 武夷山市| 汝州市| 时尚| 岐山县| 玛沁县| 瓮安县| 健康| 德庆县| 祁东县| 揭西县| 田林县| 昌图县| 泽库县| 郁南县| 济阳县| 霍林郭勒市| 炉霍县| 腾冲县| 湖北省| 开原市| 宜城市| 科技| 阳山县| 铜梁县| 石景山区| 壤塘县| 思茅市| 青田县| 璧山县| 个旧市| 杭锦后旗| 高陵县| 舒兰市| 县级市| 河北省| 河间市| 多伦县| 宜昌市| 将乐县| 汤阴县|