找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Submanifolds and Applications; Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 03:51:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:27:58 | 只看該作者
23#
發(fā)表于 2025-3-25 12:48:05 | 只看該作者
24#
發(fā)表于 2025-3-25 17:47:07 | 只看該作者
https://doi.org/10.1007/978-3-322-96170-9rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
25#
發(fā)表于 2025-3-25 23:38:28 | 只看該作者
,Einkaufsverhandlungen (aus-)führen,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.
26#
發(fā)表于 2025-3-26 03:22:13 | 只看該作者
https://doi.org/10.1007/978-3-663-13458-9bmanifolds where equality scenarios are valid and present several applications of the main finding. Additionally, we create an inequality for Ricci solitons to discover connections between intrinsic and extrinsic invariants.
27#
發(fā)表于 2025-3-26 07:13:17 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:34 | 只看該作者
,A Survey on?Lagrangian Submanifolds of?Nearly Kaehler Six-Sphere,rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
29#
發(fā)表于 2025-3-26 14:36:29 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
特克斯县| 都匀市| 清远市| 漳浦县| 容城县| 新建县| 南安市| 临清市| 尖扎县| 中方县| 鸡泽县| 蒲江县| 盐山县| 资兴市| 弥勒县| 呼和浩特市| 河池市| 明星| 扬中市| 剑河县| 方山县| 抚州市| 肃宁县| 山东| 皋兰县| 共和县| 渝北区| 安龙县| 资兴市| 婺源县| 明光市| 滨海县| 蓬莱市| 长阳| 汉中市| 宁南县| 中方县| 涿州市| 隆尧县| 沾化县| 乌鲁木齐市|