找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Submanifolds and Applications; Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 03:51:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:27:58 | 只看該作者
23#
發(fā)表于 2025-3-25 12:48:05 | 只看該作者
24#
發(fā)表于 2025-3-25 17:47:07 | 只看該作者
https://doi.org/10.1007/978-3-322-96170-9rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
25#
發(fā)表于 2025-3-25 23:38:28 | 只看該作者
,Einkaufsverhandlungen (aus-)führen,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.
26#
發(fā)表于 2025-3-26 03:22:13 | 只看該作者
https://doi.org/10.1007/978-3-663-13458-9bmanifolds where equality scenarios are valid and present several applications of the main finding. Additionally, we create an inequality for Ricci solitons to discover connections between intrinsic and extrinsic invariants.
27#
發(fā)表于 2025-3-26 07:13:17 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:34 | 只看該作者
,A Survey on?Lagrangian Submanifolds of?Nearly Kaehler Six-Sphere,rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
29#
發(fā)表于 2025-3-26 14:36:29 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥芬河市| 龙里县| 麻栗坡县| 固镇县| 建湖县| 五家渠市| 乌兰浩特市| 高邮市| 托克托县| 新乡市| 子洲县| 上饶市| 石楼县| 天柱县| 金山区| 陆川县| 怀安县| 霍山县| 府谷县| 泽库县| 曲阜市| 青浦区| 胶州市| 石柱| 保定市| 郴州市| 景泰县| 光山县| 玛纳斯县| 肇源县| 漳平市| 盐源县| 江川县| 衡水市| 无锡市| 武宁县| 桦川县| 上高县| 临沭县| 洪江市| 阿坝县|