找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Submanifolds and Applications; Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 10357|回復(fù): 52
樓主
發(fā)表于 2025-3-21 16:51:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry of Submanifolds and Applications
編輯Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul
視頻videohttp://file.papertrans.cn/384/383829/383829.mp4
概述Discusses a wide range of topics in geometry of submanifolds.Includes numerous problems and conjectures on submanifolds, providing insights for scientists and graduate students.Showcases the latest fi
叢書名稱Infosys Science Foundation Series
圖書封面Titlebook: Geometry of Submanifolds and Applications;  Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul  Book 2024 The Editor(s) (if applicable) and
描述This book features chapters written by renowned scientists from various parts of the world, providing an up-to-date survey of submanifold theory, spanning diverse topics and applications. The book covers a wide range of topics such as Chen–Ricci inequalities in differential geometry, optimal inequalities for Casorati curvatures in quaternion geometry, conformal η-Ricci–Yamabe solitons, submersion on statistical metallic structure, solitons in f(R, T)-gravity, metric-affine geometry, generalized Wintgen inequalities, tangent bundles, and Lagrangian submanifolds..Moreover, the book showcases the latest findings on Pythagorean submanifolds and submanifolds of four-dimensional f-manifolds. The chapters in this book delve into numerous problems and conjectures on submanifolds, providing valuable insights for scientists, educators, and graduate students looking to stay updated with the latest developments in the field. With its comprehensive coverage and detailed explanations, this book is an essential resource for anyone interested in submanifold theory..
出版日期Book 2024
關(guān)鍵詞Yamabe Solitons; Almost Contact Metric Manifolds; Casorati Curvature; Complete Lift; Ricci Solitons; η-Ri
版次1
doihttps://doi.org/10.1007/978-981-99-9750-3
isbn_softcover978-981-99-9752-7
isbn_ebook978-981-99-9750-3Series ISSN 2363-6149 Series E-ISSN 2363-6157
issn_series 2363-6149
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Geometry of Submanifolds and Applications影響因子(影響力)




書目名稱Geometry of Submanifolds and Applications影響因子(影響力)學(xué)科排名




書目名稱Geometry of Submanifolds and Applications網(wǎng)絡(luò)公開度




書目名稱Geometry of Submanifolds and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Submanifolds and Applications被引頻次




書目名稱Geometry of Submanifolds and Applications被引頻次學(xué)科排名




書目名稱Geometry of Submanifolds and Applications年度引用




書目名稱Geometry of Submanifolds and Applications年度引用學(xué)科排名




書目名稱Geometry of Submanifolds and Applications讀者反饋




書目名稱Geometry of Submanifolds and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:50:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:11:29 | 只看該作者
2363-6149 d graduate students looking to stay updated with the latest developments in the field. With its comprehensive coverage and detailed explanations, this book is an essential resource for anyone interested in submanifold theory..978-981-99-9752-7978-981-99-9750-3Series ISSN 2363-6149 Series E-ISSN 2363-6157
地板
發(fā)表于 2025-3-22 05:36:09 | 只看該作者
,Solitons in?,-Gravity,ively. Specifically, we establish criteria in which .-Ricci solitons are shrinking, expanding, or steady and for gradient .-Ricci solitons, either the spacetime represents the equation of state . constant, or the perfect fluid has vanishing vorticity.
5#
發(fā)表于 2025-3-22 10:31:15 | 只看該作者
978-981-99-9752-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
6#
發(fā)表于 2025-3-22 16:11:04 | 只看該作者
Geometry of Submanifolds and Applications978-981-99-9750-3Series ISSN 2363-6149 Series E-ISSN 2363-6157
7#
發(fā)表于 2025-3-22 20:06:03 | 只看該作者
8#
發(fā)表于 2025-3-22 21:26:20 | 只看該作者
Georg Reddewig,Hans-Achim Dubberkeent Yamabe solitons, .-Ricci and gradient .-Ricci solitons are its metrics. We establish criteria for which Ricci solitons are steady, expanding, or shrinking. Moreover, we study gradient Ricci solitons and prove that either the perfect fluid spacetime represents the dark energy era, or the spacetim
9#
發(fā)表于 2025-3-23 02:44:02 | 只看該作者
https://doi.org/10.1007/978-3-322-96170-9rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodes
10#
發(fā)表于 2025-3-23 06:32:58 | 只看該作者
,Einkaufsverhandlungen (aus-)führen,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江源县| 开原市| 历史| 和田市| 大英县| 公主岭市| 库尔勒市| 郴州市| 雅江县| 郎溪县| 休宁县| 瓮安县| 云龙县| 永定县| 鸡西市| 新野县| 棋牌| 杭锦后旗| 伽师县| 玉龙| 连南| 晋宁县| 高安市| 温宿县| 格尔木市| 凉城县| 石柱| 华亭县| 襄汾县| 莱阳市| 黄大仙区| 正镶白旗| 宜都市| 蛟河市| 太谷县| 成都市| 兰坪| 眉山市| 张北县| 太谷县| 天台县|