找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Manifolds with Non-negative Sectional Curvature; Editors: Rafael Herr Owen Dearricott,Fernando Galaz-García,Wolfgang Zil Book 2

[復(fù)制鏈接]
樓主: 鏟除
21#
發(fā)表于 2025-3-25 05:46:16 | 只看該作者
22#
發(fā)表于 2025-3-25 09:14:40 | 只看該作者
Einführung in die pharmazeutische Chemiee show that a compact, simply connected Riemannian 4- or 5-manifold of quasipositive curvature and maximal symmetry rank must be diffeomorphic to the 4-sphere, complex projective plane or the 5-sphere.
23#
發(fā)表于 2025-3-25 12:37:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:26 | 只看該作者
26#
發(fā)表于 2025-3-26 02:13:58 | 只看該作者
27#
發(fā)表于 2025-3-26 05:46:42 | 只看該作者
An Introduction to Exterior Differential Systems,ior differential systems. Moreover we discuss the algebraic properties of the Spencer cohomology associated to an exterior differential system and sketch a proof of the theorem of Cartan–K?hler about the analytical solutions to an analytical exterior differential system.
28#
發(fā)表于 2025-3-26 12:27:18 | 只看該作者
Physikalisch-chemische Natur der Schlacken,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
29#
發(fā)表于 2025-3-26 13:37:25 | 只看該作者
Lectures on ,-Sasakian Manifolds,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
30#
發(fā)表于 2025-3-26 18:34:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 泸溪县| 温泉县| 浦县| 宁武县| 常山县| 桃园县| 墨玉县| 大邑县| 玉田县| 金堂县| 红安县| 甘德县| 和林格尔县| 沅江市| 平利县| 禄劝| 镇安县| 山丹县| 庆阳市| 湘乡市| 塘沽区| 中西区| 六枝特区| 九龙县| 长海县| 光泽县| 西藏| 若羌县| 水富县| 莱阳市| 扶沟县| 巩留县| 榆林市| 襄汾县| 琼结县| 工布江达县| 分宜县| 巴东县| 柳林县| 梁平县|