找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Manifolds with Non-negative Sectional Curvature; Editors: Rafael Herr Owen Dearricott,Fernando Galaz-García,Wolfgang Zil Book 2

[復(fù)制鏈接]
查看: 41980|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:36:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Manifolds with Non-negative Sectional Curvature
副標題Editors: Rafael Herr
編輯Owen Dearricott,Fernando Galaz-García,Wolfgang Zil
視頻videohttp://file.papertrans.cn/384/383817/383817.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometry of Manifolds with Non-negative Sectional Curvature; Editors: Rafael Herr Owen Dearricott,Fernando Galaz-García,Wolfgang Zil Book 2
描述Providing an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems.
出版日期Book 2014
關(guān)鍵詞53C21;57S25;53C23;58A15;58A20; 22Exx;22Fxx,53Cxx;; Cohomogeneity one action; Lie group action; Non-negat
版次1
doihttps://doi.org/10.1007/978-3-319-06373-7
isbn_softcover978-3-319-06372-0
isbn_ebook978-3-319-06373-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Geometry of Manifolds with Non-negative Sectional Curvature影響因子(影響力)




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature影響因子(影響力)學(xué)科排名




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature網(wǎng)絡(luò)公開度




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature被引頻次




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature被引頻次學(xué)科排名




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature年度引用




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature年度引用學(xué)科排名




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature讀者反饋




書目名稱Geometry of Manifolds with Non-negative Sectional Curvature讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:10:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:40:46 | 只看該作者
地板
發(fā)表于 2025-3-22 07:26:56 | 只看該作者
On the Hopf Conjecture with Symmetry,r the assumption that a torus of sufficiently large dimension acts by isometries. This improves previous results by replacing linear bounds by a logarithmic bound. The new method that is introduced is the use of Steenrod squares combined with geometric arguments of a similar type to what was done be
5#
發(fā)表于 2025-3-22 10:32:38 | 只看該作者
An Introduction to Exterior Differential Systems, this introduction we construct the contact systems on several kinds of jet bundles in order to reduce general partial differential equations to exterior differential systems. Moreover we discuss the algebraic properties of the Spencer cohomology associated to an exterior differential system and ske
6#
發(fā)表于 2025-3-22 15:17:35 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:54 | 只看該作者
8#
發(fā)表于 2025-3-23 00:38:50 | 只看該作者
9#
發(fā)表于 2025-3-23 05:13:58 | 只看該作者
Riemannian Manifolds with Positive Sectional Curvature,Of special interest in the history of Riemannian geometry have been manifolds with positive sectional curvature. In these notes we give a survey of this subject and recent developments.
10#
發(fā)表于 2025-3-23 08:00:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰宁县| 时尚| 高阳县| 抚宁县| 临沧市| 栖霞市| 会理县| 刚察县| 锦州市| 紫云| 贡嘎县| 通江县| 巫山县| 玉山县| 永和县| 林口县| 宝鸡市| 山阴县| 贵南县| 额尔古纳市| 巫山县| 方正县| 志丹县| 本溪市| 崇义县| 马鞍山市| 海晏县| 西乌| 武义县| 驻马店市| 娱乐| 禄劝| 扶余县| 阳信县| 夏津县| 文成县| 霍州市| 洛隆县| 贡觉县| 临清市| 通化县|