找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential

[復(fù)制鏈接]
樓主: necrosis
21#
發(fā)表于 2025-3-25 03:54:46 | 只看該作者
22#
發(fā)表于 2025-3-25 08:14:43 | 只看該作者
https://doi.org/10.1007/978-3-322-93587-8 observations. The first is that the canonical lift.of a Riemannian foliation . to the bundle. of orthonormal frames of .is a transversally parallelizable Riemannian foliation. The canonical lift. on.is a foliation of the same dimension as . on ., and invariant under the action of the orthogonal str
23#
發(fā)表于 2025-3-25 14:07:17 | 只看該作者
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
24#
發(fā)表于 2025-3-25 17:49:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:02 | 只看該作者
26#
發(fā)表于 2025-3-26 00:58:06 | 只看該作者
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
27#
發(fā)表于 2025-3-26 07:43:58 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:05 | 只看該作者
Cohomology Vanishing and Tautness,d on the positivity of certain curvature expressions. The Weitzenb?ck formula for the transversal Laplacian Δ. has, aside from the usual terms, correction terms involving the mean curvature, which interfere with the usual arguments leading to vanishing theorems.
29#
發(fā)表于 2025-3-26 12:45:54 | 只看該作者
30#
發(fā)表于 2025-3-26 16:59:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀什市| 盐源县| 平顶山市| 镇康县| 永昌县| 和林格尔县| 府谷县| 恩施市| 新民市| 贡觉县| 贵定县| 安龙县| 崇阳县| 禹州市| 宜丰县| 临海市| 理塘县| 厦门市| 长武县| 客服| 永川市| 历史| 新和县| 乌拉特后旗| 庐江县| 望城县| 靖西县| 来凤县| 鲁甸县| 霍州市| 双柏县| 乌拉特后旗| 阳西县| 安泽县| 栖霞市| 嘉义县| 淄博市| 东安县| 明星| 琼结县| 宜宾市|