找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential

[復(fù)制鏈接]
樓主: necrosis
21#
發(fā)表于 2025-3-25 03:54:46 | 只看該作者
22#
發(fā)表于 2025-3-25 08:14:43 | 只看該作者
https://doi.org/10.1007/978-3-322-93587-8 observations. The first is that the canonical lift.of a Riemannian foliation . to the bundle. of orthonormal frames of .is a transversally parallelizable Riemannian foliation. The canonical lift. on.is a foliation of the same dimension as . on ., and invariant under the action of the orthogonal str
23#
發(fā)表于 2025-3-25 14:07:17 | 只看該作者
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
24#
發(fā)表于 2025-3-25 17:49:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:41:02 | 只看該作者
26#
發(fā)表于 2025-3-26 00:58:06 | 只看該作者
https://doi.org/10.1007/978-3-322-93585-4y. A good example is provided by gauge theory, where the space of connections on a bundle . is foliated by the orbits of the gauge group . of the bundle. The .-metric on the space . of connections is invariant under the action of the gauge group . Thus . has many aspects of a Riemannian foliation.
27#
發(fā)表于 2025-3-26 07:43:58 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:05 | 只看該作者
Cohomology Vanishing and Tautness,d on the positivity of certain curvature expressions. The Weitzenb?ck formula for the transversal Laplacian Δ. has, aside from the usual terms, correction terms involving the mean curvature, which interfere with the usual arguments leading to vanishing theorems.
29#
發(fā)表于 2025-3-26 12:45:54 | 只看該作者
30#
發(fā)表于 2025-3-26 16:59:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴仁县| 七台河市| 宿迁市| 鹤岗市| 响水县| 宁德市| 汾阳市| 扬州市| 滦平县| 揭阳市| 锦屏县| 土默特左旗| 万州区| 介休市| 漳平市| 沾益县| 遂昌县| 潮州市| 酉阳| 安丘市| 康定县| 杭锦后旗| 民和| 高邑县| 资中县| 板桥市| 江都市| 成武县| 富宁县| 清水河县| 紫阳县| 鄂温| 汪清县| 临安市| 莱州市| 稻城县| 迭部县| 房山区| 绍兴市| 东阳市| 济阳县|