找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential

[復制鏈接]
查看: 24612|回復: 52
樓主
發(fā)表于 2025-3-21 19:53:50 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Foliations
編輯Philippe Tondeur
視頻videohttp://file.papertrans.cn/384/383807/383807.mp4
叢書名稱Monographs in Mathematics
圖書封面Titlebook: Geometry of Foliations;  Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential
描述The topics in this survey volume concern research done on the differential geom- etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de- voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa- ration for the statement of Molino‘s Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes‘ point of view of foliations as examples of non- commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of f
出版日期Book 1997
關鍵詞Finite; Mean curvature; Riemannian geometry; curvature; differential geometry; equation; geometry
版次1
doihttps://doi.org/10.1007/978-3-0348-8914-8
isbn_softcover978-3-0348-9825-6
isbn_ebook978-3-0348-8914-8Series ISSN 1017-0480 Series E-ISSN 2296-4886
issn_series 1017-0480
copyrightSpringer Basel AG 1997
The information of publication is updating

書目名稱Geometry of Foliations影響因子(影響力)




書目名稱Geometry of Foliations影響因子(影響力)學科排名




書目名稱Geometry of Foliations網(wǎng)絡公開度




書目名稱Geometry of Foliations網(wǎng)絡公開度學科排名




書目名稱Geometry of Foliations被引頻次




書目名稱Geometry of Foliations被引頻次學科排名




書目名稱Geometry of Foliations年度引用




書目名稱Geometry of Foliations年度引用學科排名




書目名稱Geometry of Foliations讀者反饋




書目名稱Geometry of Foliations讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:41:11 | 只看該作者
978-3-0348-9825-6Springer Basel AG 1997
板凳
發(fā)表于 2025-3-22 04:06:15 | 只看該作者
Geometry of Foliations978-3-0348-8914-8Series ISSN 1017-0480 Series E-ISSN 2296-4886
地板
發(fā)表于 2025-3-22 07:23:58 | 只看該作者
Zusammengefa?te MetaphorisierungenThe simplest examples of foliations of codimension one are the level surfaces of a function. → ? with no critical points. This is of course only possible for a noncompact manifold .. The one-form ω = . is thus assumed nonsingular, i.e. ω. ≠ O for all . ∈..
5#
發(fā)表于 2025-3-22 12:25:35 | 只看該作者
,Einführung in die Lineare Algebra,A Riemannian metric.on the normal bundle.of a foliation . is holonomy invariant, if..Here we have by definition for...A Riemannian foliation is a foliation . with a holonomy invariant transversal metric . The study of these foliations was initiated by Reinhart in 1959 [Re 2].
6#
發(fā)表于 2025-3-22 16:35:01 | 只看該作者
Grenzwerte und Stetigkeit von Funktionen,In this chapter we discuss the case of tangentially oriented 1-dimensional foliations, in which many of the previously discussed concepts take a particularly simple form.
7#
發(fā)表于 2025-3-22 19:39:47 | 只看該作者
https://doi.org/10.1007/978-3-8348-9223-2Throughout this chapter . denotes a transversally oriented Riemannian foliation on a closed oriented manifold .. We discuss Hodge theory and a duality theorem for the cohomology of basic forms [K-To 10,12].
8#
發(fā)表于 2025-3-23 00:08:01 | 只看該作者
,Einführung in die Lineare Algebra,A Lie foliation is a foliation whose transversal structure is modeled on a Lie group. These were initially studied by Fedida [Fe 1] and Molino [Mo 5,8].
9#
發(fā)表于 2025-3-23 04:38:35 | 只看該作者
10#
發(fā)表于 2025-3-23 07:27:01 | 只看該作者
https://doi.org/10.1007/978-3-322-92891-7We begin this chapter with the description of the concept of the graph of a foliation, and then describe Connes’ view of foliations in the context of noncommutative spaces.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安远县| 友谊县| 饶阳县| 凤山市| 石景山区| 神池县| 聂拉木县| 长乐市| 永德县| 南投县| 滁州市| 如皋市| 鄂伦春自治旗| 绥德县| 黄陵县| 习水县| 永顺县| 宣恩县| 安阳市| 凌海市| 广东省| 广宗县| 大姚县| 霍山县| 琼结县| 菏泽市| 酉阳| 九龙县| 木里| 友谊县| 卫辉市| 玛多县| 淄博市| 噶尔县| 石嘴山市| 甘肃省| 偏关县| 南投县| 高陵县| 桓仁| 韩城市|