找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Deep Learning; A Signal Processing Jong Chul Ye Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 46830|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:57:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometry of Deep Learning
副標(biāo)題A Signal Processing
編輯Jong Chul Ye
視頻videohttp://file.papertrans.cn/384/383804/383804.mp4
概述Covers recent developments in deep learning and a wide spectrum of issues, with exercise problems for students.Employs unified mathematical approaches with illustrative graphics to present various tec
叢書(shū)名稱(chēng)Mathematics in Industry
圖書(shū)封面Titlebook: Geometry of Deep Learning; A Signal Processing  Jong Chul Ye Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined.?.To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are desc
出版日期Textbook 2022
關(guān)鍵詞Deep learning; Mathematical principle of deep learning; Geometric understanding of deep neural network
版次1
doihttps://doi.org/10.1007/978-981-16-6046-7
isbn_softcover978-981-16-6048-1
isbn_ebook978-981-16-6046-7Series ISSN 1612-3956 Series E-ISSN 2198-3283
issn_series 1612-3956
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱(chēng)Geometry of Deep Learning影響因子(影響力)




書(shū)目名稱(chēng)Geometry of Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometry of Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometry of Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometry of Deep Learning被引頻次




書(shū)目名稱(chēng)Geometry of Deep Learning被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometry of Deep Learning年度引用




書(shū)目名稱(chēng)Geometry of Deep Learning年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometry of Deep Learning讀者反饋




書(shū)目名稱(chēng)Geometry of Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:59:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:48:14 | 只看該作者
5#
發(fā)表于 2025-3-22 11:03:32 | 只看該作者
6#
發(fā)表于 2025-3-22 15:53:57 | 只看該作者
Einführung in die Volkswirtschaftslehreks, brain networks, molecule networks, etc. See some examples in Fig. 8.1. In fact, the complex interaction in real systems can be described by different forms of graphs, so that graphs can be a ubiquitous tool for representing complex systems.
7#
發(fā)表于 2025-3-22 19:46:51 | 只看該作者
8#
發(fā)表于 2025-3-22 23:00:12 | 只看該作者
9#
發(fā)表于 2025-3-23 05:10:05 | 只看該作者
10#
發(fā)表于 2025-3-23 08:12:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐东| 太仆寺旗| 余姚市| 铁力市| 赣榆县| 兴安县| 南城县| 怀安县| 黑龙江省| 太谷县| 米泉市| 宁远县| 浦江县| 广德县| 全南县| 磐安县| 凤城市| 蓝田县| 布拖县| 肥东县| 万州区| 平潭县| 新河县| 泗水县| 大新县| 涿鹿县| 光泽县| 澄江县| 辽阳市| 开鲁县| 东乡县| 天等县| 洪江市| 丰顺县| 江达县| 宁晋县| 西丰县| 虹口区| 咸宁市| 金川县| 开远市|