找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Deep Learning; A Signal Processing Jong Chul Ye Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 46836|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:57:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Deep Learning
副標(biāo)題A Signal Processing
編輯Jong Chul Ye
視頻videohttp://file.papertrans.cn/384/383804/383804.mp4
概述Covers recent developments in deep learning and a wide spectrum of issues, with exercise problems for students.Employs unified mathematical approaches with illustrative graphics to present various tec
叢書名稱Mathematics in Industry
圖書封面Titlebook: Geometry of Deep Learning; A Signal Processing  Jong Chul Ye Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined.?.To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are desc
出版日期Textbook 2022
關(guān)鍵詞Deep learning; Mathematical principle of deep learning; Geometric understanding of deep neural network
版次1
doihttps://doi.org/10.1007/978-981-16-6046-7
isbn_softcover978-981-16-6048-1
isbn_ebook978-981-16-6046-7Series ISSN 1612-3956 Series E-ISSN 2198-3283
issn_series 1612-3956
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Geometry of Deep Learning影響因子(影響力)




書目名稱Geometry of Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Geometry of Deep Learning網(wǎng)絡(luò)公開度




書目名稱Geometry of Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Deep Learning被引頻次




書目名稱Geometry of Deep Learning被引頻次學(xué)科排名




書目名稱Geometry of Deep Learning年度引用




書目名稱Geometry of Deep Learning年度引用學(xué)科排名




書目名稱Geometry of Deep Learning讀者反饋




書目名稱Geometry of Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:59:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:48:14 | 只看該作者
5#
發(fā)表于 2025-3-22 11:03:32 | 只看該作者
6#
發(fā)表于 2025-3-22 15:53:57 | 只看該作者
Einführung in die Volkswirtschaftslehreks, brain networks, molecule networks, etc. See some examples in Fig. 8.1. In fact, the complex interaction in real systems can be described by different forms of graphs, so that graphs can be a ubiquitous tool for representing complex systems.
7#
發(fā)表于 2025-3-22 19:46:51 | 只看該作者
8#
發(fā)表于 2025-3-22 23:00:12 | 只看該作者
9#
發(fā)表于 2025-3-23 05:10:05 | 只看該作者
10#
發(fā)表于 2025-3-23 08:12:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锡林郭勒盟| 台南县| 习水县| 前郭尔| 台安县| 黄龙县| 邵阳县| 洛阳市| 鲁甸县| 元谋县| 洪雅县| 剑阁县| 平昌县| 瑞昌市| 连云港市| 太和县| 方城县| 康保县| 米泉市| 甘泉县| 集贤县| 贵南县| 平远县| 凌源市| 黎平县| 彭水| 蕲春县| 墨竹工卡县| 崇阳县| 雷波县| 新宾| 新沂市| 宜章县| 年辖:市辖区| 翼城县| 盖州市| 正蓝旗| 昌邑市| 聊城市| 郧西县| 方城县|