找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復(fù)制鏈接]
樓主: odometer
31#
發(fā)表于 2025-3-26 21:45:38 | 只看該作者
Integer Angles of Integer Triangles classical Euclidean criteria for congruence for triangles and present several examples. Further, we verify which triples of angles can be taken as angles of an integer triangle; this generalizes the Euclidean condition .+.+.=. for the angles of a triangle (this formula will be used later in Chap.?.
32#
發(fā)表于 2025-3-27 03:43:05 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:09 | 只看該作者
34#
發(fā)表于 2025-3-27 12:45:03 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:25 | 只看該作者
36#
發(fā)表于 2025-3-27 19:13:48 | 只看該作者
Geometry of Continued Fractions with Real Elements and Kepler’s Second Lawnatural extension of this interpretation to the case of continued fractions with arbitrary elements? The aim of this chapter is to answer this question..We start with a geometric interpretation of odd or infinite continued fractions with arbitrary elements in terms of broken lines in the plane havin
37#
發(fā)表于 2025-3-27 22:48:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:52:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:07:41 | 只看該作者
Basic Notions and Definitions of Multidimensional Integer Geometry integer invariants. Further, we use them to study the properties of multidimensional continued fractions. First, we introduce integer volumes of polytopes, integer distances, and integer angles. Then we express volumes of polytopes, integer distances, and integer angles in terms of integer volumes
40#
發(fā)表于 2025-3-28 13:58:15 | 只看該作者
On Empty Simplices, Pyramids, Parallelepipedsty tetrahedra and the classification of pyramids whose integer points are contained in the base of pyramids in .. Later in the book we essentially use the classification of the mentioned pyramids for studying faces of multidimensional continued fractions. In particular, the describing of such pyrami
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于田县| 渝中区| 西吉县| 东阳市| 四川省| 平顺县| 嘉定区| 军事| 罗江县| 宣恩县| 五峰| 江川县| 高唐县| 安仁县| 龙山县| 普安县| 黄浦区| 太保市| 南华县| 满洲里市| 孟连| 大荔县| 徐州市| 青州市| 久治县| 广丰县| 泸水县| 吐鲁番市| 佛山市| 渝中区| 罗定市| 邹城市| 蒙阴县| 南澳县| 正阳县| 静宁县| 通化县| 南京市| 西乌| 石楼县| 永定县|