找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復(fù)制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 05:51:35 | 只看該作者
22#
發(fā)表于 2025-3-25 08:49:43 | 只看該作者
,L?sung der Fundamentalaufgaben,or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions.
23#
發(fā)表于 2025-3-25 13:55:40 | 只看該作者
Einführung in die Systemtheorietinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
24#
發(fā)表于 2025-3-25 18:24:10 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:26 | 只看該作者
Geometry of Regular Continued Fractionstinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
26#
發(fā)表于 2025-3-26 01:59:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:24 | 只看該作者
On Integer Geometry solution. This chapter is entirely dedicated to notions, definitions, and basic properties of integer geometry. We start with general definitions of integer geometry, and in particular, define integer lengths, distances, areas of triangles, and indexes of angles. Further we extend the notion of int
28#
發(fā)表于 2025-3-26 11:30:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:43 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼玛县| 陇西县| 长葛市| 吴忠市| 宜都市| 太康县| 临西县| 株洲市| 永丰县| 宝山区| 集安市| 大英县| 静安区| 上虞市| 西安市| 呼伦贝尔市| 左云县| 当阳市| 汝州市| 蒙山县| 富平县| 五莲县| 舒城县| 咸阳市| 比如县| 武胜县| 金阳县| 从江县| 海晏县| 麟游县| 光山县| 安图县| 金山区| 斗六市| 桃园县| 湟源县| 东兴市| 巫溪县| 西畴县| 万源市| 嘉善县|