找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復(fù)制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 05:51:35 | 只看該作者
22#
發(fā)表于 2025-3-25 08:49:43 | 只看該作者
,L?sung der Fundamentalaufgaben,or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions.
23#
發(fā)表于 2025-3-25 13:55:40 | 只看該作者
Einführung in die Systemtheorietinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
24#
發(fā)表于 2025-3-25 18:24:10 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:26 | 只看該作者
Geometry of Regular Continued Fractionstinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
26#
發(fā)表于 2025-3-26 01:59:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:24 | 只看該作者
On Integer Geometry solution. This chapter is entirely dedicated to notions, definitions, and basic properties of integer geometry. We start with general definitions of integer geometry, and in particular, define integer lengths, distances, areas of triangles, and indexes of angles. Further we extend the notion of int
28#
發(fā)表于 2025-3-26 11:30:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:43 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都江堰市| 谢通门县| 津南区| 安溪县| 上高县| 射阳县| 无极县| 龙口市| 永年县| 济源市| 齐齐哈尔市| 扎兰屯市| 深圳市| 邹城市| 襄樊市| 密云县| 富裕县| 仪征市| 上饶县| 休宁县| 阿坝| 铜川市| 通化县| 乐业县| 合川市| 澄江县| 沅江市| 吴江市| 安徽省| 车致| 香格里拉县| 邳州市| 波密县| 清新县| 竹北市| 临清市| 富平县| 昌图县| 桃江县| 平江县| 潞西市|