找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 05:51:35 | 只看該作者
22#
發(fā)表于 2025-3-25 08:49:43 | 只看該作者
,L?sung der Fundamentalaufgaben,or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions.
23#
發(fā)表于 2025-3-25 13:55:40 | 只看該作者
Einführung in die Systemtheorietinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
24#
發(fā)表于 2025-3-25 18:24:10 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:26 | 只看該作者
Geometry of Regular Continued Fractionstinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
26#
發(fā)表于 2025-3-26 01:59:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:24 | 只看該作者
On Integer Geometry solution. This chapter is entirely dedicated to notions, definitions, and basic properties of integer geometry. We start with general definitions of integer geometry, and in particular, define integer lengths, distances, areas of triangles, and indexes of angles. Further we extend the notion of int
28#
發(fā)表于 2025-3-26 11:30:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:43 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南溪县| 霍邱县| 阿鲁科尔沁旗| 远安县| 体育| 武汉市| 依安县| 黔西| 安康市| 鱼台县| 鄂托克前旗| 梅州市| 民和| 招远市| 堆龙德庆县| 喀喇沁旗| 广南县| 武安市| 辽源市| 云安县| 攀枝花市| 哈密市| 沁源县| 抚顺市| 浮梁县| 高密市| 漠河县| 迁西县| 张家口市| 南江县| 安岳县| 屏山县| 洪湖市| 衢州市| 徐州市| 宿州市| 农安县| 北辰区| 固阳县| 尼勒克县| 阜南县|