找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復制鏈接]
樓主: odometer
21#
發(fā)表于 2025-3-25 05:51:35 | 只看該作者
22#
發(fā)表于 2025-3-25 08:49:43 | 只看該作者
,L?sung der Fundamentalaufgaben,or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions.
23#
發(fā)表于 2025-3-25 13:55:40 | 只看該作者
Einführung in die Systemtheorietinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
24#
發(fā)表于 2025-3-25 18:24:10 | 只看該作者
25#
發(fā)表于 2025-3-25 22:15:26 | 只看該作者
Geometry of Regular Continued Fractionstinued fractions in terms of integer lengths of edges and indices of angles for the boundaries of convex hulls of all integer points inside certain angles. In the next chapter we will extend this construction to construct a complete invariant of integer angles. For the geometry of continued fractions with arbitrary elements see Chap.?..
26#
發(fā)表于 2025-3-26 01:59:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:24 | 只看該作者
On Integer Geometry solution. This chapter is entirely dedicated to notions, definitions, and basic properties of integer geometry. We start with general definitions of integer geometry, and in particular, define integer lengths, distances, areas of triangles, and indexes of angles. Further we extend the notion of int
28#
發(fā)表于 2025-3-26 11:30:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:55:43 | 只看該作者
30#
發(fā)表于 2025-3-26 20:44:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
井陉县| 兴隆县| 丘北县| 尉犁县| 高唐县| 军事| 抚松县| 通州市| 望谟县| 铜梁县| 新竹市| 上蔡县| 遂川县| 军事| 镇平县| 菏泽市| 施甸县| 九龙坡区| 三台县| 原平市| 炉霍县| 武汉市| 镇原县| 大田县| 卓资县| 兴业县| 柳河县| 乐昌市| 双鸭山市| 连山| 高要市| 册亨县| 牙克石市| 柳江县| 宁强县| 台东市| 临海市| 蒙自县| 高雄市| 清徐县| 锡林郭勒盟|