找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and its Applications; Vladimir Rovenski,Pawe? Walczak Conference proceedings 2014 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: Osteopenia
21#
發(fā)表于 2025-3-25 04:25:44 | 只看該作者
https://doi.org/10.1007/978-3-7091-9903-9 orthogonal to the leaf, .(., .) is the mean value of sectional curvatures over all mixed planes containing .. The flow preserves total umbilicity, total geodesy, and harmonicity of foliations. It is used to examine the question: Which foliations admit a metric with a given property of mixed section
22#
發(fā)表于 2025-3-25 08:20:02 | 只看該作者
23#
發(fā)表于 2025-3-25 14:44:33 | 只看該作者
Einführung in die pathologische Physiologie existing . and . jet shapes and also predicts the existence of periodic shape. However, sufficient simplifications of mathematical models of the flow details were made: the effects of the forces of surface tension of the longitudinal motion and the variability of the tangential velocity component o
24#
發(fā)表于 2025-3-25 18:49:15 | 只看該作者
https://doi.org/10.1007/978-3-7091-3516-7e value on any subset . of positive measure in [?1, 1]. Similarly, in several variables the maximum of the absolute value of a polynomial .(.) of degree . on the unit ball . can be bounded through the maximum of its absolute value on any subset . ? ... of positive .-measure ..(.). In [11] a stronger
25#
發(fā)表于 2025-3-25 23:49:13 | 只看該作者
https://doi.org/10.1007/978-3-662-25926-9In this chapter we investigate the convergence of the mean curvature flow of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we prove that the flow deforms a closed submanifold with pinching condition to a “round point” in finite time.
26#
發(fā)表于 2025-3-26 02:53:50 | 只看該作者
https://doi.org/10.1007/978-3-642-51425-8In this paper we deal with two types of questions concerning the structure of foliations (or laminations) on compact spaces:.The two questions are related by the fact that exceptional minimal sets in codimension one present stronger generic constraints.
27#
發(fā)表于 2025-3-26 06:11:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:04 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:44 | 只看該作者
Pathophysiologie der Kopfschmerzen,We show existence of cycles in some special nonlinear 4-D and 5-D dynamical systems and construct in their phase portraits invariant surfaces containing these cycles. In the 5D case, we demonstrate non-uniqueness of the cycles. Some possible mechanisms of this non-uniqueness are described as well.
30#
發(fā)表于 2025-3-26 17:23:52 | 只看該作者
Gaussian Mean Curvature Flow for Submanifolds in Space FormsIn this chapter we investigate the convergence of the mean curvature flow of submanifolds in Euclidean and hyperbolic spaces with Gaussian density. For Euclidean case, we prove that the flow deforms a closed submanifold with pinching condition to a “round point” in finite time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安远县| 平阴县| 通州区| 穆棱市| 苗栗县| 中超| 武穴市| 扎鲁特旗| 榆中县| 长宁县| 缙云县| 肃北| 宁强县| 寿宁县| 长岭县| 青河县| 定西市| 虎林市| 包头市| 通城县| 榆社县| 民和| 西华县| 沙雅县| 南阳市| 乡城县| 双城市| 厦门市| 比如县| 酉阳| 东乌珠穆沁旗| 琼海市| 于田县| 丹凤县| 岳池县| 衡东县| 镇康县| 镇原县| 萨迦县| 同心县| 福州市|