找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and its Applications; Vladimir Rovenski,Pawe? Walczak Conference proceedings 2014 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: Osteopenia
11#
發(fā)表于 2025-3-23 11:30:08 | 只看該作者
Einleitung: Bedeutung der PLL-Technik, only .(3) of constant curvature + 1 admits stable totally geodesic submanifolds of this kind. Restricting the variations to left-invariant (i.e., equidistant) ones, we give a complete list of groups which admit stable/unstable unit vector fields with totally geodesic image.
12#
發(fā)表于 2025-3-23 16:51:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:28:17 | 只看該作者
14#
發(fā)表于 2025-3-24 00:14:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:03:58 | 只看該作者
The Ricci Flow on Some Generalized Wallach Spacesingularity of all singular points of the normalized Ricci flow on all such spaces. Our main result gives a qualitative answer for almost all points . in the cube .. We also consider in detail some important partial cases.
16#
發(fā)表于 2025-3-24 06:32:52 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:17:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:08:23 | 只看該作者
https://doi.org/10.1007/978-3-662-42480-3tem. All nonsymmetric generalized Wallach spaces can be naturally parametrized by three positive numbers .. Our interest is to determine the type of singularity of all singular points of the normalized Ricci flow on all such spaces. Our main result gives a qualitative answer for almost all points .
20#
發(fā)表于 2025-3-25 03:13:23 | 只看該作者
Sheila R. Buxton,Stanley M. Robertsoportional to the mixed scalar curvature, Scal.. The flow preserves harmonicity of foliations and is used to examine the question: When does a foliation admit a metric with a given property of Scal. (e.g., positive/negative or constant)? If the mean curvature vector of . is leaf-wise conservative, t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑水县| 荔浦县| 武隆县| 曲阳县| 射洪县| 海阳市| 广东省| 双城市| 美姑县| 叶城县| 青河县| 胶南市| 黔东| 德兴市| 遂昌县| 彝良县| 康马县| 井冈山市| 清镇市| 榆社县| 建瓯市| 大方县| 清水县| 平顶山市| 海盐县| 宁明县| 宜良县| 永定县| 六安市| 日喀则市| 石城县| 孙吴县| 名山县| 浦城县| 福安市| 长治县| 安泽县| 宝鸡市| 合江县| 兴国县| 偃师市|