找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Representation Theory of Real and p-adic groups; Juan Tirao,David A. Vogan,Joseph A. Wolf Textbook 1998 Birkh?user Boston 199

[復(fù)制鏈接]
樓主: Monroe
41#
發(fā)表于 2025-3-28 17:03:56 | 只看該作者
42#
發(fā)表于 2025-3-28 21:13:11 | 只看該作者
The Spherical Dual for ,-adic Groups,sible irreducible (g, .) modules in the work of Langlands, Shelstad, Knapp—Zuckerman and Vogan. In the .-adic case they play a significant role in the work of Kazhdan—Lusztig and Lusztig. There is a technical modification in that one considers maps of the Weil—Deligne—Langlands group,..
43#
發(fā)表于 2025-3-29 00:45:52 | 只看該作者
0743-1643 s, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a d978-1-4612-8681-3978-1-4612-4162-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
44#
發(fā)表于 2025-3-29 03:37:14 | 只看該作者
45#
發(fā)表于 2025-3-29 07:56:38 | 只看該作者
Finite Rank Homogeneous Holomorphic Bundles in Flag Spaces,ns for a real reductive Lie group. In the mid 1950s, Harish-Chandra realized a family of irreducible unitary representations for some semisimple groups, using the global sections of homogeneous bundles defined over Hermitian symmetric spaces [6]. At about the same time Borel and Weil constructed the
46#
發(fā)表于 2025-3-29 12:11:53 | 只看該作者
47#
發(fā)表于 2025-3-29 15:55:44 | 只看該作者
Smooth Representations of Reductive ,-adic Groups,f smooth (complex) representations of a .-adic group in terms of certain irreducible representations of compact, open subgroups. Motivation for this program comes from two special cases which may be viewed as extreme examples of what one hopes is a general phenomenon.
48#
發(fā)表于 2025-3-29 19:51:50 | 只看該作者
49#
發(fā)表于 2025-3-30 00:50:52 | 只看該作者
50#
發(fā)表于 2025-3-30 06:37:14 | 只看該作者
Flag Manifolds and Representation Theory,a, August 1995. The topics were complex flag manifolds, real group orbits, and linear cycle spaces, with applications to the geometric construction of representations of semisimple Lie groups. These topics come up in many aspects of complex differential geometry and harmonic analysis.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁门县| 泰和县| 黎川县| 临澧县| 潢川县| 牙克石市| 昌宁县| 弥勒县| 乾安县| 西安市| 信阳市| 潞西市| 建德市| 庄浪县| 建德市| 九龙城区| 茂名市| 丹江口市| 建阳市| 安西县| 海安县| 盐津县| 伊通| 德钦县| 新昌县| 乃东县| 富蕴县| 泰宁县| 普宁市| 白河县| 彰武县| 大邑县| 牟定县| 陕西省| 嘉义市| 彭水| 台北县| 晋江市| 甘谷县| 荣昌县| 德惠市|