找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Representation Theory of Real and p-adic groups; Juan Tirao,David A. Vogan,Joseph A. Wolf Textbook 1998 Birkh?user Boston 199

[復(fù)制鏈接]
樓主: Monroe
21#
發(fā)表于 2025-3-25 06:45:52 | 只看該作者
22#
發(fā)表于 2025-3-25 07:57:29 | 只看該作者
Whittaker Models for Carayol Representations of ,,(,),Let . be a local non-Archimedean field with residual characteristic . and let . be the group of all invertible . × . matrices over ..
23#
發(fā)表于 2025-3-25 11:59:55 | 只看該作者
24#
發(fā)表于 2025-3-25 16:52:56 | 只看該作者
25#
發(fā)表于 2025-3-25 21:09:14 | 只看該作者
26#
發(fā)表于 2025-3-26 01:37:23 | 只看該作者
Einführung in die Geschichte der Soziologie the representation. We explicitly prove the compatibility of this formula with the known induced character formula. The tools we use in the proof are some geometric properties of generalized flag manifolds and their orbits.
27#
發(fā)表于 2025-3-26 04:45:17 | 只看該作者
Hanfried Kerle,Reinhard Pittschellisf smooth (complex) representations of a .-adic group in terms of certain irreducible representations of compact, open subgroups. Motivation for this program comes from two special cases which may be viewed as extreme examples of what one hopes is a general phenomenon.
28#
發(fā)表于 2025-3-26 08:59:56 | 只看該作者
Der Sinn der Wirtschaftspolitik, theory of Bernstein and Beilinson. These constructions made an enormous impact on our understanding of representation theory during the last decades (see, for example, [19]). Our present approach and interest is slightly different than usual. We approach these constructions from the point of view o
29#
發(fā)表于 2025-3-26 12:46:47 | 只看該作者
,Wahrscheinlichkeit und Verfügbarkeit,me that . = Res. Spin(.) has an ?-fundamental torus of split rank 1 and fix a congruence subgroup . of .(?)..We consider a theta function Θ(.) for . which is related to the analytic torsion and the length spectrum of closed geodesies on the corresponding locally symmetric space. We compare these fun
30#
發(fā)表于 2025-3-26 16:48:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园市| 图们市| 泾源县| 陆河县| 仙游县| 西乡县| 惠来县| 华阴市| 贡觉县| 锦屏县| 娱乐| 六枝特区| 敦化市| 天镇县| 肃宁县| 泰顺县| 金秀| 达尔| 普洱| 华阴市| 红安县| 遂溪县| 同江市| 宁强县| 临颍县| 富锦市| 安陆市| 伊吾县| 许昌市| 托克逊县| 武胜县| 桦南县| 鹤山市| 普格县| 和平区| 巩义市| 泸水县| 安宁市| 安顺市| 张掖市| 读书|