找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Invariance in Stochastic Dynamics; Verona, Italy, March Stefania Ugolini,Marco Fuhrman,Barbara Rüdiger Conference proceedings

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 05:57:00 | 只看該作者
22#
發(fā)表于 2025-3-25 08:22:35 | 只看該作者
https://doi.org/10.1007/978-3-322-94108-4 process ensuring that its mild solution is positive if the initial datum is positive. As an application, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model via Musiela’s stochastic PDE.
23#
發(fā)表于 2025-3-25 12:34:38 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:22 | 只看該作者
,Asymptotic Expansion for a Black–Scholes Model with Small Noise Stochastic Jump-Diffusion Interest ar, we consider the case when the small perturbation is due to a general, but small, noise of Lévy type. Moreover, we provide explicit expressions for the involved expansion coefficients as well as accurate estimates on the remainders.
25#
發(fā)表于 2025-3-25 20:17:50 | 只看該作者
26#
發(fā)表于 2025-3-26 03:53:15 | 只看該作者
Rough Homogenisation with Fractional Dynamics,actional and non-strong-mixing noise and providing new examples. The emphasise of the review will be on the recently developed effective dynamic theory for two scale random systems with fractional noise: Stochastic Averaging and ‘Rough Diffusion Homogenisation Theory’. We also study the geometric models with perturbations to symmetries.
27#
發(fā)表于 2025-3-26 08:16:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:01:44 | 只看該作者
On the Positivity of Local Mild Solutions to Stochastic Evolution Equations, process ensuring that its mild solution is positive if the initial datum is positive. As an application, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model via Musiela’s stochastic PDE.
29#
發(fā)表于 2025-3-26 14:57:37 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:59 | 只看該作者
https://doi.org/10.1007/978-3-030-87432-260HXX, 60H15, 34C15, 35B06, 37HXX; invariance and symmetry; dimensional stochastic differential equati
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华容县| 舟曲县| 阿瓦提县| 新竹市| 那坡县| 安达市| 乌兰浩特市| 衡水市| 长岭县| 永清县| 台山市| 东阳市| 上杭县| 七台河市| 麻栗坡县| 四子王旗| 平谷区| 白朗县| 舞阳县| 莱芜市| 乐亭县| 贵港市| 怀远县| 板桥市| 屯留县| 南安市| 白水县| 巴林左旗| 家居| 华安县| 霍邱县| 安国市| 台中市| 漳浦县| 菏泽市| 桂林市| 明溪县| 浙江省| 大同市| 泊头市| 昌平区|