找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Invariance in Stochastic Dynamics; Verona, Italy, March Stefania Ugolini,Marco Fuhrman,Barbara Rüdiger Conference proceedings

[復(fù)制鏈接]
查看: 24693|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:42:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics
副標(biāo)題Verona, Italy, March
編輯Stefania Ugolini,Marco Fuhrman,Barbara Rüdiger
視頻videohttp://file.papertrans.cn/384/383769/383769.mp4
叢書(shū)名稱(chēng)Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Geometry and Invariance in Stochastic Dynamics; Verona, Italy, March Stefania Ugolini,Marco Fuhrman,Barbara Rüdiger Conference proceedings
描述.This book grew out of the Random Transformations and Invariance in Stochastic Dynamics conference held in Verona from the 25th to the 28th of March 2019 in honour of Sergio Albeverio. It presents the new area of studies concerning invariance and symmetry properties of finite and infinite dimensional stochastic differential equations.This area constitutes a natural, much needed, extension of the theory of classical ordinary and partial differential equations, where the reduction theory based on symmetry and invariance of such classical equations has historically proved to be very important both for theoretical and numerical studies and has given rise to important applications..The purpose of the present book is to present the state of the art of the studies on stochastic systems from this point of view, present some of the underlying fundamental ideas and methods involved, and to outline the main lines for future developments. The main focus is on bridging the gap between deterministic and stochastic approaches, with the goal of contributing to the elaboration of a unified theory that will have a great impact both from the theoretical point of view and the point of view of applicat
出版日期Conference proceedings 2021
關(guān)鍵詞60HXX, 60H15, 34C15, 35B06, 37HXX; invariance and symmetry; dimensional stochastic differential equati
版次1
doihttps://doi.org/10.1007/978-3-030-87432-2
isbn_softcover978-3-030-87434-6
isbn_ebook978-3-030-87432-2Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics影響因子(影響力)




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics被引頻次




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics年度引用




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics讀者反饋




書(shū)目名稱(chēng)Geometry and Invariance in Stochastic Dynamics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:02 | 只看該作者
,Asymptotic Expansion for a Black–Scholes Model with Small Noise Stochastic Jump-Diffusion Interest ar, we consider the case when the small perturbation is due to a general, but small, noise of Lévy type. Moreover, we provide explicit expressions for the involved expansion coefficients as well as accurate estimates on the remainders.
板凳
發(fā)表于 2025-3-22 01:23:28 | 只看該作者
Stochastic Geodesics,cal path of an energy functional) to diffusion processes on Riemannian manifolds. These stochastic processes are no longer smooth paths but they are still critical points of a regularised stochastic energy functional. We consider stochastic geodesics on compact Riemannian manifolds and also on (poss
地板
發(fā)表于 2025-3-22 05:58:55 | 只看該作者
5#
發(fā)表于 2025-3-22 11:00:32 | 只看該作者
Higher Order Derivatives of Heat Semigroups on Spheres and Riemannian Symmetric Spaces,phere .. The formula demonstrates that for higher order derivatives there can be a spectrum of decay/growth rates, unlike the generic situation for first derivatives which is fundamental for Bakry-Emery theory. The method used is then applied for higher derivatives for spheres, and could be used for
6#
發(fā)表于 2025-3-22 15:51:38 | 只看該作者
7#
發(fā)表于 2025-3-22 17:02:40 | 只看該作者
,Stochastic Geometric Mechanics with?Diffeomorphisms, mechanics and is shown to play a central role in deriving and understanding the generation of fluid circulation via the Kelvin-Noether theorem for ideal fluids with stochastic advection by Lie transport (SALT).
8#
發(fā)表于 2025-3-22 21:42:16 | 只看該作者
McKean Feynman-Kac Probabilistic Representations of Non-linear Partial Differential Equations, solutions of McKean Feynman-Kac Equations (MFKEs) that generalize the notion of McKean Stochastic Differential Equations (MSDEs). While MSDEs can be related to non-linear Fokker-Planck PDEs, MFKEs can be related to non-conservative non-linear PDEs. Motivations come from modeling issues but also fro
9#
發(fā)表于 2025-3-23 05:24:55 | 只看該作者
Bernstein Processes, Isovectors and Mechanics, problem stated by Schr?dinger in 1931. Those diffusions satisfy two unusual properties. Although typically not time-homogeneous, they are time reversible. Also their infinitesimal coefficients are specific functions of positive solutions of time adjoint parabolic equations. The symmetries of these
10#
發(fā)表于 2025-3-23 09:12:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建平县| 榆树市| 福州市| 宁陕县| 阿拉尔市| 枣阳市| 嘉鱼县| 蕉岭县| 健康| 呼和浩特市| 兴海县| 娱乐| 金昌市| 洛扎县| 清新县| 合川市| 麻城市| 兴安盟| 定边县| 沁阳市| 怀远县| 莎车县| 随州市| 商洛市| 营口市| 湘潭市| 建湖县| 静乐县| 广宁县| 阿合奇县| 沂水县| 峨边| 城步| 颍上县| 蓝山县| 黎平县| 雅江县| 罗平县| 聂荣县| 湟中县| 前郭尔|