找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Dynamics of Groups and Spaces; In Memory of Alexand Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya Book 2008 Birkh?user Ba

[復(fù)制鏈接]
樓主: CANTO
21#
發(fā)表于 2025-3-25 04:09:09 | 只看該作者
Pentagon Relation for the Quantum Dilogarithm and Quantized ,,rove that it is preserved by the intertwiner operator defined using the quantum dilogarithm. Using this we can define a representation of the quantized moduli space of configurations of 5 points on the projective line.
22#
發(fā)表于 2025-3-25 10:37:58 | 只看該作者
Geodesic Flow on the Normal Congruence of a Minimal Surfaces. The metric is lorentz with isolated degenerate points and the flow is shown to be completely integrable. In addition, we give a new holomorphic description of minimal surfaces in ?. and relate it to the classical Weierstrass representation.
23#
發(fā)表于 2025-3-25 14:23:57 | 只看該作者
Milnor Invariants and ,-Class Groupsic Milnor numbers. As an application, we describe the Galois module structure of the .-class group of a cyclic extension of ? of degree . (. being a prime number) in terms of the arithmetic higher linking matrices. In particular, our formula generalizes the classical formula of Rédei on the 4 and 8 ranks of the 2-class group of a quadratic field.
24#
發(fā)表于 2025-3-25 18:24:08 | 只看該作者
https://doi.org/10.1007/978-3-662-36809-1J?rgensen’s inequality gives a necessary condition for a non-elementary group of M?bius transformations to be discrete. In this paper we generalise this to the case of groups of M?bius transformations of a non-Archimedean metric space. As an application, we give a version of J?rgensen’s inequality for SL(2, ?.).
25#
發(fā)表于 2025-3-25 20:47:17 | 只看該作者
26#
發(fā)表于 2025-3-26 00:48:51 | 只看該作者
27#
發(fā)表于 2025-3-26 06:28:58 | 只看該作者
28#
發(fā)表于 2025-3-26 11:34:56 | 只看該作者
https://doi.org/10.1007/978-3-642-86505-3This is a survey of higher-dimensional Kleinian groups, i.e., discrete isometry groups of the hyperbolic .-space ?. for . ≥ 4. Our main emphasis is on the topological and geometric aspects of higher-dimensional Kleinian groups and their contrast with the discrete groups of isometry of ?..
29#
發(fā)表于 2025-3-26 14:50:27 | 只看該作者
30#
發(fā)表于 2025-3-26 19:15:33 | 只看該作者
Chern Character for Twisted ComplexesWe construct the Chern character from the .-theory of twisted perfect complexes of an algebroid stack to the negative cyclic homology of the algebra of twisted matrices associated to the stack.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
容城县| 南溪县| 平和县| 阿鲁科尔沁旗| 木里| 正宁县| 德安县| 黔南| 鹤山市| 裕民县| 濮阳市| 临安市| 运城市| 江城| 湛江市| 普陀区| 宁波市| 宜兴市| 东乌珠穆沁旗| 灵台县| 双牌县| 南开区| 科技| 九江县| 富川| 留坝县| 隆回县| 玉山县| 兴城市| 大厂| 监利县| 东港市| 贺州市| 东丽区| 隆化县| 桦甸市| 永德县| 苍梧县| 云林县| 武川县| 深水埗区|