找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Dynamics of Groups and Spaces; In Memory of Alexand Mikhail Kapranov,Yuri Ivanovich Manin,Leonid Potya Book 2008 Birkh?user Ba

[復(fù)制鏈接]
樓主: CANTO
11#
發(fā)表于 2025-3-23 11:43:35 | 只看該作者
https://doi.org/10.1007/978-3-663-20209-7l features and variants of parabolic structures are discussed. Parabolic bundles arising from logarithmic connections form an important class of examples. As an application, we consider the situation when the local monodromies are semi-simple and are of finite order at infinity. In this case the par
12#
發(fā)表于 2025-3-23 14:04:36 | 只看該作者
Das Elektron als Korpuskel und als Welleerential graded category of complexes of .-modules, where . is a ground commutative ring. Serre ..-functors are defined via ..-bimodules likewise Kontsevich and Soibelman. We prove that a unital closed under shifts ..-category . over a field . admits a Serre ..-functor if and only if its homotopy ca
13#
發(fā)表于 2025-3-23 20:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:05:06 | 只看該作者
15#
發(fā)表于 2025-3-24 02:29:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:24:17 | 只看該作者
,Mechanismus der Leitungsstr?me,amples and counterexamples produced via the (.)-techniques in every of the following categories: (i) probability preserving actions, (ii) infinite measure preserving actions, (iii) non-singular actions (Krieger’s type .).
17#
發(fā)表于 2025-3-24 13:19:55 | 只看該作者
18#
發(fā)表于 2025-3-24 15:32:42 | 只看該作者
19#
發(fā)表于 2025-3-24 20:05:33 | 只看該作者
Einführung in die Elektrotechnikic Milnor numbers. As an application, we describe the Galois module structure of the .-class group of a cyclic extension of ? of degree . (. being a prime number) in terms of the arithmetic higher linking matrices. In particular, our formula generalizes the classical formula of Rédei on the 4 and 8 ranks of the 2-class group of a quadratic field.
20#
發(fā)表于 2025-3-25 03:03:01 | 只看該作者
(,)-Actions in Ergodic Theoryamples and counterexamples produced via the (.)-techniques in every of the following categories: (i) probability preserving actions, (ii) infinite measure preserving actions, (iii) non-singular actions (Krieger’s type .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚松县| 屯留县| 漯河市| 石门县| 民丰县| 进贤县| 东平县| 衡阳市| 台东市| 连南| 红原县| 乌什县| 孝义市| 奇台县| 岳池县| 四川省| 阳谷县| 鄱阳县| 洛南县| 江津市| 天长市| 永靖县| 五河县| 和顺县| 当雄县| 金溪县| 米林县| 鄂州市| 文安县| 巴东县| 怀化市| 苏州市| 资源县| 寿宁县| 象州县| 望江县| 南陵县| 上栗县| 杭锦旗| 陆川县| 荆州市|