找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis of Fractals; Hong Kong, December De-Jun Feng,Ka-Sing Lau Conference proceedings 2014 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
查看: 24095|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:14:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry and Analysis of Fractals
副標(biāo)題Hong Kong, December
編輯De-Jun Feng,Ka-Sing Lau
視頻videohttp://file.papertrans.cn/384/383761/383761.mp4
概述Promote discussion on the very activity field of fractal geometry and its aspects in analysis, dynamical systems and stochastics.Written by international leading experts on their current research in a
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Geometry and Analysis of Fractals; Hong Kong, December  De-Jun Feng,Ka-Sing Lau Conference proceedings 2014 Springer-Verlag Berlin Heidelbe
描述.This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics..
出版日期Conference proceedings 2014
關(guān)鍵詞Dirichlet form; Ergodic average; Fractal curvature; Heat kernel; Metric measure space,; Multifractal, pe
版次1
doihttps://doi.org/10.1007/978-3-662-43920-3
isbn_softcover978-3-662-51376-7
isbn_ebook978-3-662-43920-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

書目名稱Geometry and Analysis of Fractals影響因子(影響力)




書目名稱Geometry and Analysis of Fractals影響因子(影響力)學(xué)科排名




書目名稱Geometry and Analysis of Fractals網(wǎng)絡(luò)公開度




書目名稱Geometry and Analysis of Fractals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry and Analysis of Fractals被引頻次




書目名稱Geometry and Analysis of Fractals被引頻次學(xué)科排名




書目名稱Geometry and Analysis of Fractals年度引用




書目名稱Geometry and Analysis of Fractals年度引用學(xué)科排名




書目名稱Geometry and Analysis of Fractals讀者反饋




書目名稱Geometry and Analysis of Fractals讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:59 | 只看該作者
The Geometry of Fractal Percolation, in three directions:.. the statements work for all directions, not almost all,.. the statements are true for more general projections, for example radial projections onto a circle,.. in the case ., each projection has not only positive Lebesgue measure but also has nonempty interior.
板凳
發(fā)表于 2025-3-22 04:09:19 | 只看該作者
地板
發(fā)表于 2025-3-22 07:05:40 | 只看該作者
Conference proceedings 2014c Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese Universit
5#
發(fā)表于 2025-3-22 09:53:25 | 只看該作者
6#
發(fā)表于 2025-3-22 15:47:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:02:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:58:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:10 | 只看該作者
Die Herkunft der Pyramidenbausteineoduction to additive combinatorics, focusing on inverse theorems, which play a pivotal role in the proof. Our elementary approach avoids many of the technicalities in [.], but also falls short of a complete proof; in the last section we discuss how the heuristic argument is turned into a rigorous one.
10#
發(fā)表于 2025-3-23 07:31:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭州市| 定襄县| 博罗县| 中超| 定结县| 衢州市| 邢台市| 信丰县| 芒康县| 新邵县| 潼南县| 公安县| 荆门市| 调兵山市| 富源县| 遂川县| 沽源县| 兴业县| 洮南市| 鄄城县| 昭觉县| 扶余县| 长葛市| 平武县| 偏关县| 申扎县| 万荣县| 安塞县| 柳林县| 婺源县| 延津县| 黔西县| 永州市| 额敏县| 德清县| 金寨县| 大安市| 青河县| 鹤峰县| 禹州市| 五大连池市|