找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis of Fractals; Hong Kong, December De-Jun Feng,Ka-Sing Lau Conference proceedings 2014 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
查看: 24096|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:14:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometry and Analysis of Fractals
副標(biāo)題Hong Kong, December
編輯De-Jun Feng,Ka-Sing Lau
視頻videohttp://file.papertrans.cn/384/383761/383761.mp4
概述Promote discussion on the very activity field of fractal geometry and its aspects in analysis, dynamical systems and stochastics.Written by international leading experts on their current research in a
叢書(shū)名稱Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Geometry and Analysis of Fractals; Hong Kong, December  De-Jun Feng,Ka-Sing Lau Conference proceedings 2014 Springer-Verlag Berlin Heidelbe
描述.This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics..
出版日期Conference proceedings 2014
關(guān)鍵詞Dirichlet form; Ergodic average; Fractal curvature; Heat kernel; Metric measure space,; Multifractal, pe
版次1
doihttps://doi.org/10.1007/978-3-662-43920-3
isbn_softcover978-3-662-51376-7
isbn_ebook978-3-662-43920-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

書(shū)目名稱Geometry and Analysis of Fractals影響因子(影響力)




書(shū)目名稱Geometry and Analysis of Fractals影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometry and Analysis of Fractals網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometry and Analysis of Fractals網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometry and Analysis of Fractals被引頻次




書(shū)目名稱Geometry and Analysis of Fractals被引頻次學(xué)科排名




書(shū)目名稱Geometry and Analysis of Fractals年度引用




書(shū)目名稱Geometry and Analysis of Fractals年度引用學(xué)科排名




書(shū)目名稱Geometry and Analysis of Fractals讀者反饋




書(shū)目名稱Geometry and Analysis of Fractals讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:18:59 | 只看該作者
The Geometry of Fractal Percolation, in three directions:.. the statements work for all directions, not almost all,.. the statements are true for more general projections, for example radial projections onto a circle,.. in the case ., each projection has not only positive Lebesgue measure but also has nonempty interior.
板凳
發(fā)表于 2025-3-22 04:09:19 | 只看該作者
地板
發(fā)表于 2025-3-22 07:05:40 | 只看該作者
Conference proceedings 2014c Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese Universit
5#
發(fā)表于 2025-3-22 09:53:25 | 只看該作者
6#
發(fā)表于 2025-3-22 15:47:36 | 只看該作者
7#
發(fā)表于 2025-3-22 20:02:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:58:24 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:10 | 只看該作者
Die Herkunft der Pyramidenbausteineoduction to additive combinatorics, focusing on inverse theorems, which play a pivotal role in the proof. Our elementary approach avoids many of the technicalities in [.], but also falls short of a complete proof; in the last section we discuss how the heuristic argument is turned into a rigorous one.
10#
發(fā)表于 2025-3-23 07:31:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荣昌县| 平山县| 元朗区| 砚山县| 邵武市| 宜兴市| 濮阳市| 名山县| 巴青县| 米脂县| 离岛区| 蓝山县| 天柱县| 华坪县| 泸州市| 武宣县| 德化县| 塘沽区| 明溪县| 平南县| 莱州市| 大同县| 奉贤区| 高碑店市| 贵溪市| 克什克腾旗| 剑阁县| 临朐县| 铜川市| 上虞市| 腾冲县| 苍南县| 宝兴县| 沾益县| 香河县| 山东省| 武隆县| 双牌县| 商南县| 苍梧县| 双牌县|