找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Topological Aspects of the Representation Theory of Finite Groups; PIMS Summer School a Jon F. Carlson,Srikanth B. Iyengar,Ju

[復(fù)制鏈接]
樓主: 熱情美女
41#
發(fā)表于 2025-3-28 17:38:52 | 只看該作者
42#
發(fā)表于 2025-3-28 20:05:57 | 只看該作者
43#
發(fā)表于 2025-3-29 01:39:18 | 只看該作者
Optimizing the Use of Cultural Heritageint representation for . or its highest weight is minuscule. In this paper, we prove an analogous criteria for irreducibility of Weyl modules over the quantum group . where . is a complex simple Lie algebra and . ranges over roots of unity.
44#
發(fā)表于 2025-3-29 05:02:42 | 只看該作者
45#
發(fā)表于 2025-3-29 11:18:46 | 只看該作者
46#
發(fā)表于 2025-3-29 11:51:48 | 只看該作者
International Trade and Payments,-module and . a rational .-module. We put a variety structure on the set of all .-summands of . that are isomorphic to ., and study basic properties of these varieties. This is primarily to set the stage for later work that will bring techniques from geometric invariant theory to bear on the problem
47#
發(fā)表于 2025-3-29 19:08:04 | 只看該作者
48#
發(fā)表于 2025-3-29 21:36:24 | 只看該作者
49#
發(fā)表于 2025-3-30 03:12:47 | 只看該作者
50#
發(fā)表于 2025-3-30 07:38:57 | 只看該作者
Economic Development is Human Developmenta triangulated category with Auslander–Reiten triangles, taking only relations given by direct sum decompositions. We examine the non-degeneracy of the bilinear form given by dimensions of homomorphisms, and show that the form may be modified to give a Hermitian form for which the standard basis giv
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南涧| 东光县| 多伦县| 罗平县| 宜春市| 苗栗县| 东城区| 宁德市| 凌源市| 牙克石市| 昆山市| 本溪| 花垣县| 浠水县| 南京市| 黄山市| 西城区| 万载县| 梁河县| 仙居县| 息烽县| 林西县| 会同县| 顺义区| 敦煌市| 布尔津县| 大关县| 安徽省| 英山县| 谢通门县| 松原市| 隆化县| 河西区| 疏勒县| 古丈县| 重庆市| 满洲里市| 霍邱县| 东港市| 齐河县| 张家港市|