找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces and Applications; TJC 2019, Djerba, Tu Ali Baklouti,Hideyuki Ishi Conference proceedi

[復制鏈接]
樓主: SORB
41#
發(fā)表于 2025-3-28 17:37:26 | 只看該作者
42#
發(fā)表于 2025-3-28 21:52:33 | 只看該作者
Tai-Yoo Kim,Almas Heshmati,Jihyoun Park terms of its .-norm and the diameter of its support. We investigate in this paper the algebraic structure of compactly generated .-adic groups that have property (RD). We prove in particular that an algebraic group over . which is compactly generated as well as its radical has property (RD) if and
43#
發(fā)表于 2025-3-28 23:51:12 | 只看該作者
The Sources and Evolution of Growth,eir generators. For the group actions, we consider split solvable Lie groups acting on the cones linearly and simply transitively. As an application, we present Capelli-type identities for generalized Vinberg cones.
44#
發(fā)表于 2025-3-29 03:09:03 | 只看該作者
45#
發(fā)表于 2025-3-29 08:13:20 | 只看該作者
978-3-030-78348-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
46#
發(fā)表于 2025-3-29 11:29:42 | 只看該作者
Geometric and Harmonic Analysis on Homogeneous Spaces and Applications978-3-030-78346-4Series ISSN 2194-1009 Series E-ISSN 2194-1017
47#
發(fā)表于 2025-3-29 18:31:15 | 只看該作者
48#
發(fā)表于 2025-3-29 22:01:43 | 只看該作者
Singular Integral Operators of Convolution Type on Jacobi Hypergroup,etween the . operator norms of . and the Euclidean operator ., where .. Therefore, to define the Calderón-Zygmund class ., we shall obtain some conditions on . under which . belongs to .. Then, . is bounded on . and, by the transference principle, . is bounded on ..
49#
發(fā)表于 2025-3-30 00:39:41 | 只看該作者
Conference proceedings 2021ated in the 6th Tunisian-Japanese conference "Geometric and Harmonic Analysis on homogeneous spaces and Applications" held at Djerba Island in Tunisia during the period of December 16-19, 2019. The aim of this conference and the five preceding Tunisian-Japanese meetings was to keep up with the activ
50#
發(fā)表于 2025-3-30 04:50:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
紫阳县| 五常市| 长武县| 乐东| 肥东县| 元氏县| 开江县| 中阳县| 铜陵市| 景洪市| 江门市| 泸定县| 金川县| 洪江市| 绥芬河市| 左权县| 永济市| 天津市| 彭州市| 巴里| 涞水县| 吴堡县| 灌云县| 塔城市| 庄浪县| 余江县| 吴堡县| 曲周县| 商水县| 安塞县| 界首市| 花垣县| 田阳县| 子洲县| 房山区| 昌图县| 莒南县| 长沙县| 惠水县| 吐鲁番市| 永德县|