找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces and Applications; TJC 2019, Djerba, Tu Ali Baklouti,Hideyuki Ishi Conference proceedi

[復(fù)制鏈接]
樓主: SORB
11#
發(fā)表于 2025-3-23 10:02:21 | 只看該作者
Nicolas Carnot,Vincent Koen,Bruno TissotWe classify all irreducible coherent state representations of the holomorphic automorphism group of the tube domain over the dual of the Vinberg cone.
12#
發(fā)表于 2025-3-23 15:24:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:19:24 | 只看該作者
14#
發(fā)表于 2025-3-23 22:36:08 | 只看該作者
15#
發(fā)表于 2025-3-24 03:46:18 | 只看該作者
16#
發(fā)表于 2025-3-24 06:50:07 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:58 | 只看該作者
The Compression Semigroup of the Dual Vinberg Cone,We investigate the semigroup associated with the dual Vinberg cone and prove its triple and Ol’shanski? polar decompositions. Moreover, we show that the semigroup does not have the contraction property with respect to the canonical Riemannian metric on the cone.
18#
發(fā)表于 2025-3-24 18:22:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:00:04 | 只看該作者
,An Extension of Pizzetti’s Formula Associated with the Dunkl Operators,We give an extension of Pizzetti’s formula associated with the Dunkl operators. It gives an explicit formula for the Dunkl inner product of an arbitrary function and a homogeneous Dunkl harmonic polynomial on the unit sphere.
20#
發(fā)表于 2025-3-25 00:00:14 | 只看該作者
https://doi.org/10.1057/9781137465337inin algebras of Hom-type. To this end, we provide a general key construction that establish a relationship between identities of some class of Hom-algebras and ordinary algebras. Moreover, we discuss a new concept of Hom-bialgebra, in relation with universal enveloping Hom-algebras. A study based on primitive elements is provided.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平安县| 临洮县| 安多县| 张家川| 鹤岗市| 大余县| 景洪市| 井研县| 九江市| 岑溪市| 江阴市| 宜丰县| 抚州市| 大名县| 越西县| 临汾市| 贵定县| 宣武区| 石景山区| 兴隆县| 米易县| 三穗县| 修武县| 济源市| 汝州市| 绵阳市| 永寿县| 文化| 喜德县| 南溪县| 宿松县| 永胜县| 开远市| 剑河县| 秭归县| 大港区| 宁武县| 武山县| 夹江县| 沁源县| 玛多县|