找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces; TJC 2017, Mahdia, Tu Ali Baklouti,Takaaki Nomura Conference proceedings 2019 Springe

[復(fù)制鏈接]
樓主: STRI
21#
發(fā)表于 2025-3-25 04:16:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:54:38 | 只看該作者
23#
發(fā)表于 2025-3-25 14:22:28 | 只看該作者
Economic Evaluations in Exploration on them. For non-symmetric reductive pairs, there are examples of generalizations of Cartan decompositions for some spherical complex homogeneous spaces such as complex line bundles over the complexified Hermitian symmetric spaces and triple spaces. This paper provides new examples of a Cartan deco
24#
發(fā)表于 2025-3-25 18:05:09 | 只看該作者
Economic Evaluations in Explorationhat generalises Alan Weinstein’s famous normal form theorem in symplectic geometry), providing also complete proofs for the necessary results in foliated differential topology, i.e., a foliated tubular neighborhood theorem and a foliated relative Poincaré lemma.
25#
發(fā)表于 2025-3-25 22:21:57 | 只看該作者
26#
發(fā)表于 2025-3-26 01:33:31 | 只看該作者
27#
發(fā)表于 2025-3-26 05:54:01 | 只看該作者
28#
發(fā)表于 2025-3-26 09:32:04 | 只看該作者
29#
發(fā)表于 2025-3-26 12:53:23 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:22 | 只看該作者
The Poisson Characteristic Variety of Unitary Irreducible Representations of Exponential Lie GroupsWe recall the notion of Poisson characteristic variety of a unitary irreducible representation of an exponential solvable Lie group, and conjecture that it coincides with the Zariski closure of the associated coadjoint orbit. We prove this conjecture in some particular situations, including the nilpotent case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建昌县| 五峰| 慈利县| 灵寿县| 安平县| 东宁县| 天柱县| 石门县| 尚义县| 普定县| 潞西市| 泊头市| 宣城市| 敦煌市| 荣成市| 萨嘎县| 瑞昌市| 琼海市| 应用必备| 莎车县| 额尔古纳市| 昌邑市| 来凤县| 武胜县| 大荔县| 韩城市| 望城县| 汾阳市| 敦煌市| 嵊州市| 阿城市| 天气| 广元市| 富阳市| 嵊州市| 平塘县| 方城县| 天津市| 吉首市| 时尚| 清流县|