找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces; TJC 2017, Mahdia, Tu Ali Baklouti,Takaaki Nomura Conference proceedings 2019 Springe

[復(fù)制鏈接]
查看: 27244|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:22:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces
副標(biāo)題TJC 2017, Mahdia, Tu
編輯Ali Baklouti,Takaaki Nomura
視頻videohttp://file.papertrans.cn/384/383637/383637.mp4
概述Covers a wide range of the groups with minute descriptions for harmonic analysis, including both semi-simple Lie groups and solvable Lie groups.Includes hot topics presented at the 5th Tunisian-Japane
叢書(shū)名稱Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Geometric and Harmonic Analysis on Homogeneous Spaces; TJC 2017, Mahdia, Tu Ali Baklouti,Takaaki Nomura Conference proceedings 2019 Springe
描述.This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5.th. Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima.?The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals.?Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations..
出版日期Conference proceedings 2019
關(guān)鍵詞representation theory of Lie Groups; geometry; harmonic analysis; homogeneous space; differential geomet
版次1
doihttps://doi.org/10.1007/978-3-030-26562-5
isbn_softcover978-3-030-26564-9
isbn_ebook978-3-030-26562-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces影響因子(影響力)




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces被引頻次




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces被引頻次學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces年度引用




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces年度引用學(xué)科排名




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces讀者反饋




書(shū)目名稱Geometric and Harmonic Analysis on Homogeneous Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:15:06 | 只看該作者
地板
發(fā)表于 2025-3-22 08:30:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:53:15 | 只看該作者
6#
發(fā)表于 2025-3-22 14:13:16 | 只看該作者
7#
發(fā)表于 2025-3-22 20:32:52 | 只看該作者
A Cartan Decomposition for Non-symmetric Reductive Spherical Pairs of Rank-One Type and Its Applicamposition for non-symmetric reductive pairs, namely, reductive non-symmetric spherical pairs of rank-one type. We also show that the action of some compact group on a non-symmetric reductive spherical homogeneous space of rank-one type is strongly visible.
8#
發(fā)表于 2025-3-22 22:48:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:57:28 | 只看該作者
https://doi.org/10.1007/978-3-030-26562-5representation theory of Lie Groups; geometry; harmonic analysis; homogeneous space; differential geomet
10#
發(fā)表于 2025-3-23 06:26:11 | 只看該作者
Ali Baklouti,Takaaki NomuraCovers a wide range of the groups with minute descriptions for harmonic analysis, including both semi-simple Lie groups and solvable Lie groups.Includes hot topics presented at the 5th Tunisian-Japane
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都昌县| 贵阳市| 绥棱县| 莱西市| 武山县| 民丰县| 南昌县| 大邑县| 盘锦市| 永清县| 新泰市| 永登县| 三都| 富平县| 望都县| 通榆县| 台州市| 永春县| 海安县| 通化县| 泰州市| 东辽县| 昆山市| 治多县| 攀枝花市| 田阳县| 平顶山市| 博湖县| 冷水江市| 宝坻区| 廉江市| 武威市| 桦川县| 华阴市| 新郑市| 城步| 石城县| 隆安县| 呈贡县| 新宾| 喀喇|