找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Topology in Dimensions 2 and 3; Edwin E. Moise Textbook 1977 Springer Science+Business Media New York 1977 Cantor.Homeomorphism.

[復制鏈接]
樓主: Autopsy
41#
發(fā)表于 2025-3-28 17:27:34 | 只看該作者
The Jordan curve theorem,The purpose of this section is to prove the following.
42#
發(fā)表于 2025-3-28 20:01:58 | 只看該作者
Piecewise linear homeomorphisms,Let . and . be complexes. We recall, from Section 0, that a homeomorphism . is . (relative to . and .) if there is a subdivision .. of . such that for each σ ∈ .., .|σ maps σ linearly into a simplex of .. “PL” stands for piecewise linear, and “PLH” stands for PL homeomorphism, or PL homeomorphic. If .. is a subdivision of ., then we write .. < ..
43#
發(fā)表于 2025-3-29 01:05:31 | 只看該作者
PL approximations of homeomorphisms,Let [., .] and [., .’] be metric spaces, and let .: .→Y and .: .→. be mappings. Let ε be a positive number. If for each . ∈ ., .’(.(.), .(.)) < ε, then . is an ε-. of ..
44#
發(fā)表于 2025-3-29 06:00:32 | 只看該作者
The triangulation theorem for 2-manifolds,In Rn, ‖P‖ denotes the norm of ., that is, the distance between . and the origin. Let
45#
發(fā)表于 2025-3-29 07:56:55 | 只看該作者
46#
發(fā)表于 2025-3-29 15:15:01 | 只看該作者
47#
發(fā)表于 2025-3-29 17:43:00 | 只看該作者
Isotopies,Let .. and .. be mappings .→.. A . between .. and .. is a mapping . such that .(., 0) = ..(.) and .(., 1) =..(.) for every . in .. If such a . exists, then .. and .. are ..
48#
發(fā)表于 2025-3-29 22:39:13 | 只看該作者
Totally disconnected compact sets in ,,,The main purpose of this section is to show that every homeomorphism between two totally disconnected compact sets in .. can be extended so as to give a homeomorphism of .. onto itself.
49#
發(fā)表于 2025-3-30 01:52:30 | 只看該作者
50#
發(fā)表于 2025-3-30 06:15:15 | 只看該作者
The Antoine set,Here we present the first and classical example of wild imbedding, due to Louis Antoine [A.], [A.]. (For the definition of ., see Section 10, just after Theorem 10.4.)
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 10:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
德惠市| 凭祥市| 永仁县| 民丰县| 黄山市| 天祝| 株洲市| 霍州市| 滨海县| 玉林市| 理塘县| 永昌县| 本溪市| 团风县| 花垣县| 寻乌县| 响水县| 永吉县| 同仁县| 高要市| 海阳市| 法库县| 平安县| 随州市| 台湾省| 利辛县| 达日县| 和龙市| 彰武县| 同德县| 宾阳县| 宣武区| 依安县| 东兴市| 巴塘县| 临城县| 云和县| 恩施市| 怀集县| 旺苍县| 左贡县|