找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Topology in Dimensions 2 and 3; Edwin E. Moise Textbook 1977 Springer Science+Business Media New York 1977 Cantor.Homeomorphism.

[復(fù)制鏈接]
查看: 33315|回復(fù): 67
樓主
發(fā)表于 2025-3-21 18:43:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Topology in Dimensions 2 and 3
編輯Edwin E. Moise
視頻videohttp://file.papertrans.cn/384/383629/383629.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Geometric Topology in Dimensions 2 and 3;  Edwin E. Moise Textbook 1977 Springer Science+Business Media New York 1977 Cantor.Homeomorphism.
描述Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not nec
出版日期Textbook 1977
關(guān)鍵詞Cantor; Homeomorphism; Manifold; Morphism; Topology; theorem
版次1
doihttps://doi.org/10.1007/978-1-4612-9906-6
isbn_softcover978-1-4612-9908-0
isbn_ebook978-1-4612-9906-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1977
The information of publication is updating

書目名稱Geometric Topology in Dimensions 2 and 3影響因子(影響力)




書目名稱Geometric Topology in Dimensions 2 and 3影響因子(影響力)學(xué)科排名




書目名稱Geometric Topology in Dimensions 2 and 3網(wǎng)絡(luò)公開度




書目名稱Geometric Topology in Dimensions 2 and 3網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Topology in Dimensions 2 and 3被引頻次




書目名稱Geometric Topology in Dimensions 2 and 3被引頻次學(xué)科排名




書目名稱Geometric Topology in Dimensions 2 and 3年度引用




書目名稱Geometric Topology in Dimensions 2 and 3年度引用學(xué)科排名




書目名稱Geometric Topology in Dimensions 2 and 3讀者反饋




書目名稱Geometric Topology in Dimensions 2 and 3讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:23 | 只看該作者
0072-5285 wo essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not nec978-1-4612-9908-0978-1-4612-9906-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
板凳
發(fā)表于 2025-3-22 01:13:06 | 只看該作者
地板
發(fā)表于 2025-3-22 05:37:08 | 只看該作者
5#
發(fā)表于 2025-3-22 12:11:52 | 只看該作者
6#
發(fā)表于 2025-3-22 16:23:12 | 只看該作者
7#
發(fā)表于 2025-3-22 18:10:23 | 只看該作者
H. Toda,M. Takahashi,S. Ichimurams of the linear structure of .., is artificially special, except in cases where the imbedding is itself an object of study; and this artificiality sometimes becomes a technical handicap, as in the following section.
8#
發(fā)表于 2025-3-22 22:13:46 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:33 | 只看該作者
10#
發(fā)表于 2025-3-23 08:14:59 | 只看該作者
The polar and high mountain tundras,urpose of this section is to prove a slightly stronger form of the latter result. (See Theorem 12.) To do this, we need to extend some of our earlier results on the PL topology of ..; and first, as a matter of convenience, we shall need the following.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永胜县| 宜兰市| 邵阳县| 额济纳旗| 虹口区| 永靖县| 黄石市| 永新县| 聊城市| 保德县| 乃东县| 临夏市| 无锡市| 鲁山县| 泸溪县| 阳新县| 黔江区| 乌恰县| 阳高县| 宣恩县| 肇庆市| 桑植县| 沾化县| 宁国市| 鄂托克前旗| 吉隆县| 蒙阴县| 临安市| 正镶白旗| 平昌县| 玉山县| 宜兰县| 连城县| 行唐县| 阜康市| 万安县| 隆昌县| 松滋市| 大悟县| 陇南市| 台东县|