找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Topology in Dimensions 2 and 3; Edwin E. Moise Textbook 1977 Springer Science+Business Media New York 1977 Cantor.Homeomorphism.

[復(fù)制鏈接]
樓主: Autopsy
41#
發(fā)表于 2025-3-28 17:27:34 | 只看該作者
The Jordan curve theorem,The purpose of this section is to prove the following.
42#
發(fā)表于 2025-3-28 20:01:58 | 只看該作者
Piecewise linear homeomorphisms,Let . and . be complexes. We recall, from Section 0, that a homeomorphism . is . (relative to . and .) if there is a subdivision .. of . such that for each σ ∈ .., .|σ maps σ linearly into a simplex of .. “PL” stands for piecewise linear, and “PLH” stands for PL homeomorphism, or PL homeomorphic. If .. is a subdivision of ., then we write .. < ..
43#
發(fā)表于 2025-3-29 01:05:31 | 只看該作者
PL approximations of homeomorphisms,Let [., .] and [., .’] be metric spaces, and let .: .→Y and .: .→. be mappings. Let ε be a positive number. If for each . ∈ ., .’(.(.), .(.)) < ε, then . is an ε-. of ..
44#
發(fā)表于 2025-3-29 06:00:32 | 只看該作者
The triangulation theorem for 2-manifolds,In Rn, ‖P‖ denotes the norm of ., that is, the distance between . and the origin. Let
45#
發(fā)表于 2025-3-29 07:56:55 | 只看該作者
46#
發(fā)表于 2025-3-29 15:15:01 | 只看該作者
47#
發(fā)表于 2025-3-29 17:43:00 | 只看該作者
Isotopies,Let .. and .. be mappings .→.. A . between .. and .. is a mapping . such that .(., 0) = ..(.) and .(., 1) =..(.) for every . in .. If such a . exists, then .. and .. are ..
48#
發(fā)表于 2025-3-29 22:39:13 | 只看該作者
Totally disconnected compact sets in ,,,The main purpose of this section is to show that every homeomorphism between two totally disconnected compact sets in .. can be extended so as to give a homeomorphism of .. onto itself.
49#
發(fā)表于 2025-3-30 01:52:30 | 只看該作者
50#
發(fā)表于 2025-3-30 06:15:15 | 只看該作者
The Antoine set,Here we present the first and classical example of wild imbedding, due to Louis Antoine [A.], [A.]. (For the definition of ., see Section 10, just after Theorem 10.4.)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤阳县| 嫩江县| 西平县| 黄平县| 布拖县| 太康县| 尤溪县| 东阳市| 凌海市| 潍坊市| 木里| 崇信县| 大新县| 嘉善县| 达日县| 博罗县| 垣曲县| 梓潼县| 滨海县| 丹巴县| 蚌埠市| 沐川县| 壶关县| 新疆| 清远市| 吴江市| 广州市| 中超| 临颍县| 梁河县| 喀喇沁旗| 揭阳市| 昆山市| 湖口县| 礼泉县| 赤城县| 长泰县| 江津市| 剑河县| 夏河县| 固安县|