找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structure of High-Dimensional Data and Dimensionality Reduction; Jianzhong Wang Book 2012 Higher Education Press, Beijing and Sp

[復(fù)制鏈接]
樓主: MASS
41#
發(fā)表于 2025-3-28 16:18:32 | 只看該作者
Kevin McDermott,Vítězslav Sommerrs, which represent the objects of interest. In the second type, the data describe the similarities (or dissimilarities) of objects that cannot be digitized or hidden. The output of a DR processing with an input of the first type is a low-dimensional data set, having the same cardinality as the inpu
42#
發(fā)表于 2025-3-28 22:45:20 | 只看該作者
43#
發(fā)表于 2025-3-29 02:59:12 | 只看該作者
44#
發(fā)表于 2025-3-29 04:32:41 | 只看該作者
45#
發(fā)表于 2025-3-29 09:24:38 | 只看該作者
46#
發(fā)表于 2025-3-29 13:27:20 | 只看該作者
Jozef Lacko,Ladislav Kusňír,Ivan Slameňetween the pairs of all neighbors of each point in the data set. Since the method keeps the local maximum variance in dimensionality reduction processing, it is called maximum variance unfolding (MVU). Like multidimensional scaling (MDS), MVU can be applied to the cases that only the local similarit
47#
發(fā)表于 2025-3-29 18:25:25 | 只看該作者
48#
發(fā)表于 2025-3-29 20:02:42 | 只看該作者
49#
發(fā)表于 2025-3-30 00:05:30 | 只看該作者
https://doi.org/10.1007/978-3-322-82834-7n a low-dimentional manifold .. Let . be the coordinate mapping on . so that . = .(.)is a DR of .. Each component of the coordinate mapping . is a linear function on .. Hence, all components of . nearly reside on the numerically null space of the Laplace-Beltrsmi operator on .. In Leigs method, a La
50#
發(fā)表于 2025-3-30 07:07:39 | 只看該作者
https://doi.org/10.1007/978-1-4612-0553-1 conceptual framework of HLLE may be viewed as a modification of the Laplacian Eigenmaps framework. Let . be the observed high-dimensional data which reside on a low-dimentional manifold . and . be the coordinate mapping on . so that . = .(.)is a DR of .. In Laplacian eigenmaps method, . is found in
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥江县| 紫金县| 五华县| 仁布县| 慈溪市| 湖口县| 揭东县| 广南县| 富源县| 苗栗市| 客服| 山东省| 洪江市| 青河县| 高唐县| 湟中县| 诸暨市| 西林县| 宁蒗| 台南县| 鸡泽县| 额济纳旗| 东莞市| 温州市| 青田县| 星座| 枞阳县| 赞皇县| 高淳县| 麦盖提县| 故城县| 大洼县| 乡宁县| 八宿县| 麻栗坡县| 兰溪市| 东至县| 德钦县| 蓝山县| 临西县| 常熟市|