找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Structure of High-Dimensional Data and Dimensionality Reduction; Jianzhong Wang Book 2012 Higher Education Press, Beijing and Sp

[復(fù)制鏈接]
樓主: MASS
31#
發(fā)表于 2025-3-26 23:42:41 | 只看該作者
Local Tangent Space Alignmentame geometric intuitions as LLE: If a data set is sampled from a smooth manifold, then the neighbors of each point remain nearby and similarly co-located in the low dimensional space. LTSA uses a different approach to the embedded space compared with LLE. In LLE, each point in the data set is linear
32#
發(fā)表于 2025-3-27 02:22:32 | 只看該作者
33#
發(fā)表于 2025-3-27 06:25:16 | 只看該作者
34#
發(fā)表于 2025-3-27 12:56:43 | 只看該作者
Diffusion Mapsbserved data resides. In Chapter 12, it was pointed out that Laplace-Beltrami operator directly links up with the heat diffusion operator by the exponential formula for positive self-adjoint operators. Therefore, they have the same eigenvector set, and the corresponding eigenvalues are linked by the
35#
發(fā)表于 2025-3-27 17:36:37 | 只看該作者
Fast Algorithms for DR Approximationta vectors is very large. The spectral decomposition of a large dimensioanl kernel encounters difficulties in at least three aspects: large memory usage, high computational complexity, and computational instability. Although the kernels in some nonlinear DR methods are sparse matrices, which enable
36#
發(fā)表于 2025-3-27 18:59:05 | 只看該作者
37#
發(fā)表于 2025-3-28 00:14:54 | 只看該作者
https://doi.org/10.1007/978-3-642-27497-8HEP; dimensionality reduction; geometric diffusion; intrinsic dimensionality of data; manifolds; neighbor
38#
發(fā)表于 2025-3-28 05:59:36 | 只看該作者
St Ephrem and the Pursuit of Wisdom2 discusses the acquisition of high-dimensional data. When dimensions of the data are very high, we shall meet the so-called curse of dimensionality, which is discussed in Section 3. The concepts of extrinsic and intrinsic dimensions of data are discussed in Section 4. It is pointed out that most hi
39#
發(fā)表于 2025-3-28 09:28:38 | 只看該作者
40#
發(fā)表于 2025-3-28 11:43:18 | 只看該作者
https://doi.org/10.1007/978-1-349-22299-5he data geometry is inherited from the manifold. Since the underlying manifold is hidden, it is hard to know its geometry by the classical manifold calculus. The data graph is a useful tool to reveal the data geometry. To construct a data graph, we first find the neighborhood system on the data, whi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵寿县| 泸定县| 加查县| 绥滨县| 无极县| 乌兰浩特市| 阿坝| 石台县| 遵化市| 泰州市| 东乌珠穆沁旗| 尉氏县| 梅州市| 海南省| 阿拉善盟| 正安县| 遂川县| 三门县| 丹东市| 佳木斯市| 巴林右旗| 宁陕县| 澄迈县| 洱源县| 连平县| 志丹县| 石首市| 吴旗县| 新乐市| 隆安县| 韩城市| 莒南县| 师宗县| 托克托县| 青州市| 江门市| 大英县| 屏山县| 海城市| 富民县| 罗甸县|