找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Singular Perturbation Theory Beyond the Standard Form; Martin Wechselberger Book 2020 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:30:32 | 只看該作者
Motivating Examples,In this chapter we present models that fall under the category of standard singularly perturbation systems (.), respectively, (.) as well as less known variants of these models that are of the general form (.), respectively, (.).
22#
發(fā)表于 2025-3-25 07:29:44 | 只看該作者
A Coordinate-Independent Setup for GSPT,This chapter is devoted to present a geometric approach to singular perturbation theory for ordinary differential equations. The material is based on Fenichel’s seminal work on . with a particular emphasis on his coordinate-independent approach (see [.], Sections 5–9).
23#
發(fā)表于 2025-3-25 15:37:58 | 只看該作者
24#
發(fā)表于 2025-3-25 16:42:02 | 只看該作者
What We Did Not Discuss,Finally, we briefly mention a few selected topics on GSPT that have not been covered in this manuscript. This list of topics is non-inclusive—it is an author’s choice (like all topics covered in this manuscript).
25#
發(fā)表于 2025-3-25 20:12:41 | 只看該作者
978-3-030-36398-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
26#
發(fā)表于 2025-3-26 00:54:19 | 只看該作者
27#
發(fā)表于 2025-3-26 07:35:40 | 只看該作者
Hongbo Ren,Weisheng Zhou,Xuepeng Qians reflect these multiple-scale features as well. Mathematical models of such multiple-scale systems are considered singular perturbation problems with two-scale problems as the most prominent. Singular perturbation theory studies systems featuring a small perturbation parameter reflecting the scale
28#
發(fā)表于 2025-3-26 11:57:18 | 只看該作者
tem to switch between slow and fast dynamics as observed in many relaxation oscillator models; see Chap. .. Geometrically, loss of normal hyperbolicity occurs generically along (a union of) codimension-one submanifold(s) of . where a nontrivial eigenvalue of the layer problem crosses the imaginary a
29#
發(fā)表于 2025-3-26 14:06:08 | 只看該作者
https://doi.org/10.1057/9781137315762o far: .Partial answers to the above questions can be found in classic . [.] which focuses on understanding significant changes in dynamical systems outputs under system parameter variations. The time-scale splitting in our singular perturbation problems creates additional complexity and sometimes s
30#
發(fā)表于 2025-3-26 20:22:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北宁市| 高密市| 上犹县| 甘南县| 潞西市| 阿克| 抚松县| 翼城县| 澎湖县| 嘉黎县| 昌平区| 时尚| 普安县| 剑川县| 淳安县| 杭锦旗| 丹寨县| 吉安市| 乌恰县| 淄博市| 正蓝旗| 奇台县| 秦皇岛市| 大石桥市| 宿迁市| 敦煌市| 大理市| 昭通市| 上犹县| 崇左市| 景谷| 迁安市| 长岛县| 徐汇区| 嘉荫县| 重庆市| 浦东新区| 凤山市| 麻城市| 邛崃市| 衡东县|