找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Singular Perturbation Theory Beyond the Standard Form; Martin Wechselberger Book 2020 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:51:46 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:31 | 只看該作者
13#
發(fā)表于 2025-3-23 20:25:30 | 只看該作者
Frontiers in Applied Dynamical Systems: Reviews and Tutorials383610.jpg
14#
發(fā)表于 2025-3-24 01:44:42 | 只看該作者
15#
發(fā)表于 2025-3-24 05:43:12 | 只看該作者
16#
發(fā)表于 2025-3-24 07:19:26 | 只看該作者
Martin WechselbergerFirst of its kind to discuss geometric singular perturbation theory in a coordinate-independent setting.Serves as an accessible entry point into the study of multiple time-scale dynamical systems.Cove
17#
發(fā)表于 2025-3-24 11:48:52 | 只看該作者
18#
發(fā)表于 2025-3-24 18:41:05 | 只看該作者
This chapter is devoted to present a geometric approach to singular perturbation theory for ordinary differential equations. The material is based on Fenichel’s seminal work on . with a particular emphasis on his coordinate-independent approach (see [.], Sections 5–9).
19#
發(fā)表于 2025-3-24 19:55:39 | 只看該作者
As mentioned in the previous chapter, the local dynamics near regular jump points indicate one possibility for solutions of a general singular perturbation problem (.), respectively, (.) to switch from slow to fast dynamics (or vice versa) which is key for any global relaxation oscillatory behaviour.
20#
發(fā)表于 2025-3-25 01:55:10 | 只看該作者
Developments in Transport StudiesFinally, we briefly mention a few selected topics on GSPT that have not been covered in this manuscript. This list of topics is non-inclusive—it is an author’s choice (like all topics covered in this manuscript).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太谷县| 成安县| 克什克腾旗| 黎城县| 四子王旗| 唐山市| 信丰县| 宁河县| 轮台县| 宁武县| 庆云县| 桓仁| 隆子县| 鹤山市| 新安县| 高密市| 博兴县| 航空| 新和县| 德阳市| 衡山县| 贡山| 三明市| 迁西县| 日照市| 襄汾县| 漯河市| 大方县| 宿松县| 正定县| 娄底市| 凯里市| 高台县| 尚义县| 高尔夫| 台北市| 平谷区| 开化县| 孝昌县| 确山县| 湖州市|