找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag

[復制鏈接]
樓主: Traction
11#
發(fā)表于 2025-3-23 13:23:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:16:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:35 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:39 | 只看該作者
Structure-Preserving Implementation,not deteriorate the correct qualitative behaviour of the solution.We study multiple time stepping strategies, the effect of round-off in long-time integrations, and the efficient solution of nonlinear systems arising in implicit integration schemes.
15#
發(fā)表于 2025-3-24 06:16:42 | 只看該作者
16#
發(fā)表于 2025-3-24 07:48:32 | 只看該作者
17#
發(fā)表于 2025-3-24 14:08:13 | 只看該作者
dBASE IV Lernen am Konkreten Beispielsses of numerical methods. We start with Runge–Kutta and collocation methods, and we introduce discontinuous collocation methods, which cover essentially all high-order implicit Runge–Kutta methods of interest. We then treat partitioned Runge–Kutta methods and Nystr?m methods, which can be applied t
18#
發(fā)表于 2025-3-24 17:38:48 | 只看該作者
https://doi.org/10.1007/978-3-322-92882-5ed Runge–Kutta methods, and composition methods by using the notion of rooted trees and B-series. These ideas lead to algebraic structures which have recently found interesting applications in quantum field theory. The chapter terminates with the Baker- Campbell-Hausdorff formula, which allows anoth
19#
發(fā)表于 2025-3-24 19:31:26 | 只看該作者
Arbeitsbereich und Datenausgabe,n manifolds. Our investigation will follow two directions. We first investigate which of the methods introduced in Chap. II conserve invariants automatically. We shall see that most of them conserve linear invariants, a few of them quadratic invariants, and none of them conserves cubic or general no
20#
發(fā)表于 2025-3-25 00:50:30 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 01:00
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临邑县| 台北县| 昂仁县| 石林| 成都市| 灌云县| 通化县| 图木舒克市| 积石山| 定州市| 晋中市| 慈溪市| 临泉县| 金平| 九寨沟县| 德江县| 辽源市| 和田县| 沾益县| 内江市| 吴川市| 章丘市| 乌鲁木齐市| 醴陵市| 新民市| 清涧县| 安仁县| 平顺县| 井研县| 祁连县| 新郑市| 张家川| 衡水市| 吉首市| 泰来县| 辉县市| 红安县| 子长县| 黄大仙区| 大兴区| 乌拉特后旗|