找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag

[復制鏈接]
查看: 26535|回復: 57
樓主
發(fā)表于 2025-3-21 16:14:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Numerical Integration
副標題Structure-Preserving
編輯Ernst Hairer,Gerhard Wanner,Christian Lubich
視頻videohttp://file.papertrans.cn/384/383580/383580.mp4
叢書名稱Springer Series in Computational Mathematics
圖書封面Titlebook: Geometric Numerical Integration; Structure-Preserving Ernst Hairer,Gerhard Wanner,Christian Lubich Book 2006Latest edition Springer-Verlag
描述.Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods..
出版日期Book 2006Latest edition
關鍵詞Hamiltonian and reversible systems; Numerical integration; algorithms; calculus; differential equations
版次2
doihttps://doi.org/10.1007/3-540-30666-8
isbn_softcover978-3-642-05157-9
isbn_ebook978-3-540-30666-5Series ISSN 0179-3632 Series E-ISSN 2198-3712
issn_series 0179-3632
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Geometric Numerical Integration影響因子(影響力)




書目名稱Geometric Numerical Integration影響因子(影響力)學科排名




書目名稱Geometric Numerical Integration網(wǎng)絡公開度




書目名稱Geometric Numerical Integration網(wǎng)絡公開度學科排名




書目名稱Geometric Numerical Integration被引頻次




書目名稱Geometric Numerical Integration被引頻次學科排名




書目名稱Geometric Numerical Integration年度引用




書目名稱Geometric Numerical Integration年度引用學科排名




書目名稱Geometric Numerical Integration讀者反饋




書目名稱Geometric Numerical Integration讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:42:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:39 | 只看該作者
https://doi.org/10.1007/3-540-30666-8Hamiltonian and reversible systems; Numerical integration; algorithms; calculus; differential equations
地板
發(fā)表于 2025-3-22 06:30:54 | 只看該作者
Common Problem Areas and Solutions,Hamiltonian systems form the most important class of ordinary differential equations in the context of ‘Geometric Numerical Integration’. An outstanding property of these systems is the symplecticity of the flow. As indicated in the following diagram
5#
發(fā)表于 2025-3-22 12:03:19 | 只看該作者
Sian Adiseshiah,Jacqueline BoltonWe discuss theoretical properties and the structure-preserving numerical treatment of Hamiltonian systems on manifolds and of the closely related class of Poisson systems.We present numerical integrators for problems from classical and quantum mechanics.
6#
發(fā)表于 2025-3-22 16:16:12 | 只看該作者
,Exposition: Identit?t(s)Brocken,One of the greatest virtues of backward analysis. is that when it is the appropriate form of analysis it tends to be very markedly superior to forward analysis. Invariably in such cases it has remarkable formal simplicity and gives deep insight into the stability (or lack of it) of the algorithm.
7#
發(fā)表于 2025-3-22 19:00:41 | 只看該作者
8#
發(fā)表于 2025-3-22 22:08:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:29:37 | 只看該作者
Non-Canonical Hamiltonian Systems,We discuss theoretical properties and the structure-preserving numerical treatment of Hamiltonian systems on manifolds and of the closely related class of Poisson systems.We present numerical integrators for problems from classical and quantum mechanics.
10#
發(fā)表于 2025-3-23 06:44:18 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阜康市| 西城区| 芮城县| 贡嘎县| 文安县| 武威市| 南京市| 沾益县| 钟山县| 土默特左旗| 恩施市| 邵武市| 乐昌市| 莫力| 鸡泽县| 方正县| 泰顺县| 建德市| 云梦县| 新津县| 宣汉县| 祁阳县| 东源县| 贵港市| 治县。| 松溪县| 互助| 纳雍县| 安溪县| 阿荣旗| 习水县| 宁都县| 竹北市| 全椒县| 曲麻莱县| 汝南县| 中方县| 尼玛县| 东辽县| 新野县| 青岛市|