找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVIII; Workshop, Bia?owie?a Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2020 Th

[復(fù)制鏈接]
樓主: sustained
51#
發(fā)表于 2025-3-30 08:44:48 | 只看該作者
On the bi-Hamiltonian Structure of the Trigonometric Spin Ruijsenaars–Sutherland HierarchyWe report on the trigonometric spin Ruijsenaars–Sutherland hierarchy derived recently by Poisson reduction of a bi-Hamiltonian hierarchy associated with free geodesic motion on the Lie group U(.). In particular, we give a direct proof of a previously stated result about the form of the second Poisson bracket in terms of convenient variables.
52#
發(fā)表于 2025-3-30 13:16:52 | 只看該作者
Maximal Surfaces on Two-Step Sub-Lorentzian StructuresWe describe sufficient maximality conditions for the classes of graph surfaces on two-step Carnot groups with sub-Lorentzian structure. In particular, we introduce a non-holonomic notion of variation of the area functional.
53#
發(fā)表于 2025-3-30 20:07:27 | 只看該作者
One Step Degeneration of Trigonal Curves and Mixing of Solitons and Quasi-Periodic Solutions of the We consider certain degenerations of trigonal curves and hyperelliptic curves, which we call one step degeneration. We compute the limits of corresponding quasi-periodic solutions using the Sato Grassmannian. The mixing of solitons and quasi-periodic solutions is clearly visible in the obtained solutions.
54#
發(fā)表于 2025-3-30 23:43:37 | 只看該作者
2297-0215 ature and Forest Museum and local traditions are interwoven with the scientific activities..The chapter “Toeplitz Extensions in Noncommutative Topology and Math978-3-030-53307-6978-3-030-53305-2Series ISSN 2297-0215 Series E-ISSN 2297-024X
55#
發(fā)表于 2025-3-31 02:05:38 | 只看該作者
56#
發(fā)表于 2025-3-31 06:43:18 | 只看該作者
Quantum Differential Equations and Helices18, arXiv:1811.09235), and Cotti and Varchenko (Equivariant quantum differential equation and . equations for a projective space: Stokes bases as exceptional collections, Stokes matrices as Gram matrices, and B-Theorem. In: Krichever, I., Novikov, S., Ogievetsky, O., Shlosman, S. (Eds.) Integrabilit
57#
發(fā)表于 2025-3-31 12:48:29 | 只看該作者
Hermitian–Einstein Metrics from Non-commutative ,(1) Solutionstroduced in “Gravitational instantons from gauge theory” Yang and Salizzoni (Phys Rev Lett 201602, 2006 [hep-th/0512215]). This correspondence is valid not only for a commutative space but also for a noncommutative space. We choose . instantons on a noncommutative . as the self-dual two-form, from w
58#
發(fā)表于 2025-3-31 14:04:53 | 只看該作者
2-Hom-Associative Bialgebras and Hom-Left Symmetric Dialgebraslled .. Besides, we define and characterize the hom-associative dialgebras, hom-Leibniz algebra and hom-left symmetric dialgebras, and discuss their main relevant properties. Explicit examples are given to illustrate the developed formalism.
59#
發(fā)表于 2025-3-31 19:47:37 | 只看該作者
Laguerre–Gaussian Wave Propagation in Parabolic Mediaus media. These wave-packets are solutions to the paraxial form of the wave equation for a medium with parabolic refractive index. The beam width is defined as a solution of the Ermakov equation associated to the harmonic oscillator, so its amplitude is modulated by the strength of the medium inhomo
60#
發(fā)表于 2025-3-31 23:14:56 | 只看該作者
Following the Trail of the Operator Geometric Meanr geometric mean in the positive cone of a unital ..-algebra. The story begins with the two-variable matrix geometric mean, moves to the .-variable matrix setting, then to the extension to the positive cone of the ..-algebra of operators on a Hilbert space, and even to general unital ..-algebras, an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞钢市| 泗阳县| 含山县| 全州县| 聂拉木县| 开远市| 东城区| 启东市| 乐东| 宁阳县| 弋阳县| 阳西县| 平南县| 屏东市| 荆门市| 松原市| 连山| 甘肃省| 耒阳市| 上饶市| 丘北县| 瑞安市| 永登县| 桐乡市| 雅江县| 大庆市| 金阳县| 新河县| 武宣县| 中西区| 金乡县| 合江县| 长顺县| 阿巴嘎旗| 肥东县| 巫山县| 越西县| 申扎县| 梁平县| 夏河县| 麻阳|